Anatomy of the Attraction Basins: Breaking with the Intuition

Solving combinatorial optimization problems efficiently requires the development of algorithms that consider the specific properties of the problems. In this sense, local search algorithms are designed over a neighborhood structure that partially accounts for these properties. Considering a neighborhood, the space is usually interpreted as a natural landscape, with valleys and mountains. Under this perception, it is commonly believed that, if maximizing, the solutions located in the slopes of the same mountain belong to the same attraction basin, with the peaks of the mountains being the local optima. Unfortunately, this is a widespread erroneous visualization of a combinatorial landscape. Thus, our aim is to clarify this aspect, providing a detailed analysis of, first, the existence of plateaus where the local optima are involved, and second, the properties that define the topology of the attraction basins, picturing a reliable visualization of the landscapes. Some of the features explored in this article have never been examined before. Hence, new findings about the structure of the attraction basins are shown. The study is focused on instances of permutation-based combinatorial optimization problems considering the 2-exchange and the insert neighborhoods. As a consequence of this work, we break away from the extended belief about the anatomy of attraction basins.

[1]  Sébastien Vérel,et al.  ParadisEO-MO: from fitness landscape analysis to efficient local search algorithms , 2013, J. Heuristics.

[2]  Enrique Alba,et al.  Local Optima Networks, Landscape Autocorrelation and Heuristic Search Performance , 2012, PPSN.

[3]  Adam Prügel-Bennett,et al.  Maximum Satisfiability: Anatomy of the Fitness Landscape for a Hard Combinatorial Optimization Problem , 2012, IEEE Transactions on Evolutionary Computation.

[4]  Thomas Stützle,et al.  Iterated local search for the quadratic assignment problem , 2006, Eur. J. Oper. Res..

[5]  T. Stützle,et al.  Iterated Local Search: Framework and Applications , 2018, Handbook of Metaheuristics.

[6]  P. Preux,et al.  Towards hybrid evolutionary algorithms , 1999 .

[7]  Bernd Freisleben,et al.  Memetic Algorithms for the Traveling Salesman Problem , 2002, Complex Syst..

[8]  Adam Prügel-Bennett,et al.  Quadratic assignment problem: a landscape analysis , 2015, Evol. Intell..

[9]  Khaled Mellouli,et al.  The k-coloring fitness landscape , 2011, J. Comb. Optim..

[10]  Sébastien Vérel,et al.  Local Optima Networks of the Quadratic Assignment Problem , 2010, IEEE Congress on Evolutionary Computation.

[11]  Sébastien Vérel,et al.  NILS: A Neutrality-Based Iterated Local Search and Its Application to Flowshop Scheduling , 2011, EvoCOP.

[12]  C. R. Reeves,et al.  Landscapes, operators and heuristic search , 1999, Ann. Oper. Res..

[13]  Alexander Mendiburu,et al.  A Tunable Generator of Instances of Permutation-Based Combinatorial Optimization Problems , 2016, IEEE Transactions on Evolutionary Computation.

[14]  Vassilis Zissimopoulos,et al.  On the Hardness of the Quadratic Assignment Problem with Metaheuristics , 2002, J. Heuristics.

[15]  Sébastien Vérel,et al.  Complex-network analysis of combinatorial spaces: The NK landscape case , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Sébastien Vérel,et al.  Local Optima Networks of the Permutation Flow-Shop Problem , 2013, Artificial Evolution.

[17]  Sébastien Vérel,et al.  On the Neutrality of Flowshop Scheduling Fitness Landscapes , 2011, LION.

[18]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[19]  Sébastien Vérel,et al.  Clustering of Local Optima in Combinatorial Fitness Landscapes , 2011, LION.

[20]  Peter Merz,et al.  Advanced Fitness Landscape Analysis and the Performance of Memetic Algorithms , 2004, Evolutionary Computation.

[21]  Kathleen Steinhöfel,et al.  Combinatorial landscape analysis for k-SAT instances , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[22]  Sébastien Vérel,et al.  Local Optima Networks with Escape Edges , 2011, Artificial Evolution.

[23]  Colin R. Reeves,et al.  Estimating the Number of Solutions for SAT Problems , 2004, PPSN.

[24]  T. Stützle,et al.  The Linear Ordering Problem: Instances, Search Space Analysis and Algorithms , 2004 .

[25]  Adam Prügel-Bennett,et al.  Anatomy of the fitness landscape for dense graph-colouring problem , 2015, Swarm Evol. Comput..

[26]  Andrew M. Sutton,et al.  Directed Plateau Search for MAX-k-SAT , 2010, SOCS.

[27]  Rich Caruana,et al.  Estimating the Number of Local Minima in Big, Nasty Search Spaces , 1999 .

[28]  Sounaka Mishra,et al.  On approximability of linear ordering and related NP-optimization problems on graphs , 2004, Discret. Appl. Math..

[29]  Adam Prügel-Bennett,et al.  On the Landscape of Combinatorial Optimization Problems , 2014, IEEE Transactions on Evolutionary Computation.

[30]  Gabriela Ochoa,et al.  Mapping the global structure of TSP fitness landscapes , 2017, J. Heuristics.

[31]  Kathleen Steinhöfel,et al.  Analysis of Local Search Landscapes for k-SAT Instances , 2010, Math. Comput. Sci..

[32]  Irene Moser,et al.  Identifying Features of Fitness Landscapes and Relating Them to Problem Difficulty , 2017, Evolutionary Computation.

[34]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[35]  Andries P. Engelbrecht,et al.  Recent Advances in the Theory and Application of Fitness Landscapes , 2013 .

[36]  Jonathan E. Rowe,et al.  Phase Transition and Landscape Properties of the Number Partitioning Problem , 2014, EvoCOP.

[37]  Ravi Sethi,et al.  The Complexity of Flowshop and Jobshop Scheduling , 1976, Math. Oper. Res..

[38]  É. Taillard Some efficient heuristic methods for the flow shop sequencing problem , 1990 .

[39]  Jean-Paul Watson,et al.  An Introduction to Fitness Landscape Analysis and Cost Models for Local Search , 2010 .

[40]  Alexander Mendiburu,et al.  A study on the complexity of TSP instances under the 2-exchange neighbor system , 2011, 2011 IEEE Symposium on Foundations of Computational Intelligence (FOCI).

[41]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[42]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[43]  Éric D. Taillard,et al.  Benchmarks for basic scheduling problems , 1993 .

[44]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[45]  Franz Rendl,et al.  QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..

[46]  Alexander Mendiburu,et al.  An Evaluation of Methods for Estimating the Number of Local Optima in Combinatorial Optimization Problems , 2013, Evolutionary Computation.

[47]  Sébastien Vérel,et al.  Local Optima Networks of NK Landscapes With Neutrality , 2011, IEEE Transactions on Evolutionary Computation.

[48]  Sébastien Vérel,et al.  The Connectivity of NK Landscapes' Basins - A Network Analysis , 2008, ALIFE.

[49]  Gabriela Ochoa,et al.  Local Optima Networks of the Permutation Flowshop Scheduling Problem: Makespan vs. total flow time , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).

[50]  Christian Bierwirth,et al.  A search space analysis of the Job Shop Scheduling Problem , 1999, Ann. Oper. Res..

[51]  Alexander Mendiburu,et al.  Generating Customized Landscapes in Permutation-Based Combinatorial Optimization Problems , 2013, LION.

[52]  Christian M. Reidys,et al.  Combinatorial Landscapes , 2002, SIAM Rev..

[53]  Jing Qin,et al.  Geometry and Coarse-Grained Representations of Landscapes , 2014 .

[54]  Alexander Mendiburu,et al.  Estimating Attraction Basin Sizes , 2016, CAEPIA.

[55]  Cyril Fonlupt,et al.  Fitness Landscapes and Performance of Meta-Heuristics , 1999 .