Thalamic and thalamocortical mechanisms underlying 3 Hz spike-and-wave discharges.

[1]  A. Destexhe,et al.  Dual intracellular recordings and computational models of slow inhibitory postsynaptic potentials in rat neocortical and hippocampal slices , 1999, Neuroscience.

[2]  A. Destexhe Spike-and-Wave Oscillations Based on the Properties of GABAB Receptors , 1998, The Journal of Neuroscience.

[3]  D. Contreras,et al.  Spike-wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus. , 1998, Journal of neurophysiology.

[4]  M Steriade,et al.  Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. , 1998, Journal of neurophysiology.

[5]  T Seidenbecher,et al.  Relations between cortical and thalamic cellular activities during absence seizures in rats , 1998, The European journal of neuroscience.

[6]  D. McCormick,et al.  Periodicity of Thalamic Synchronized Oscillations: the Role of Ca2+-Mediated Upregulation of Ih , 1998, Neuron.

[7]  D. Contreras,et al.  Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. , 1998, Journal of neurophysiology.

[8]  Maria V. Sanchez-Vives,et al.  Functional dynamics of GABAergic inhibition in the thalamus. , 1997, Science.

[9]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[10]  D. Hosford,et al.  Differential effects mediated by GABAA receptors in thalamic nuclei in lh/lh model of absence seizures , 1997, Epilepsy Research.

[11]  D. Contreras,et al.  Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. , 1997, Journal of neurophysiology.

[12]  A. Destexhe Kinetic Models of Synaptic Transmission , 1997 .

[13]  A. Coenen,et al.  Effects of the GABAB antagonist CGP 35348 on sleep-wake states, behaviour, and spike-wave discharges in old rats , 1996, Brain Research Bulletin.

[14]  T. Sejnowski,et al.  Control of Spatiotemporal Coherence of a Thalamic Oscillation by Corticothalamic Feedback , 1996, Science.

[15]  D. Coulter,et al.  GABAA receptor function in developing rat thalamic reticular neurons: whole cell recordings of GABA-mediated currents and modulation by clonazepam. , 1996, Journal of neurophysiology.

[16]  T. Sejnowski,et al.  Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. , 1996, Journal of neurophysiology.

[17]  The selective GABAB antagonist CGP-35348 blocks spike-wave bursts in the cholesterol synthesis rat absence epilepsy model , 1996, Brain Research.

[18]  D. McCormick,et al.  What Stops Synchronized Thalamocortical Oscillations? , 1996, Neuron.

[19]  J. Rinzel,et al.  Propagation of spindle waves in a thalamic slice model. , 1996, Journal of neurophysiology.

[20]  T J Sejnowski,et al.  In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  D. Contreras,et al.  Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. , 1996, The Journal of physiology.

[22]  L. Aitkin,et al.  Sensitivity to interaural intensity differences of neurons in primary auditory cortex of the cat. I. types of sensitivity and effects of variations in sound pressure level. , 1996, Journal of neurophysiology.

[23]  T. Sejnowski,et al.  G protein activation kinetics and spillover of gamma-aminobutyric acid may account for differences between inhibitory responses in the hippocampus and thalamus. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[24]  D. McCormick,et al.  Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. , 1995, Journal of neurophysiology.

[25]  D. Brooks,et al.  Demonstration of thalarnic activation during typical absence seizures using H2 15O and PET , 1995, Neurology.

[26]  J. Rinzel,et al.  Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. de Curtis,et al.  Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  D. McCormick,et al.  Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. , 1995, The Journal of physiology.

[29]  E. G. Jones,et al.  Synaptic distribution of afferents from reticular nucleus in ventroposterior nucleus of cat thalamus , 1995, The Journal of comparative neurology.

[30]  E. G. Jones,et al.  Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat , 1995, The Journal of comparative neurology.

[31]  S. Coons,et al.  Anterior communicating artery aneurysm paraparesis syndrome , 1995, Neurology.

[32]  D Contreras,et al.  Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  Terrence J. Sejnowski,et al.  G-Protein Activation Kinetics And Spill-Over Of Gaba May Account For Differences Between Inhibitory , 1995 .

[34]  D R Fish,et al.  Demonstration of thalamic activation during typical absence seizures using H2(15)O and PET. , 1995, Neurology.

[35]  D. Prince,et al.  Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  T. Sejnowski,et al.  A model of spindle rhythmicity in the isolated thalamic reticular nucleus. , 1994, Journal of neurophysiology.

[37]  M. Gutnick,et al.  Long-term changes in neocortical activity after chemical kindling with systemic pentylenetetrazole: an in vitro study. , 1994, Journal of neurophysiology.

[38]  G. V. Wallenstein The role of thalamic IGABAb in generating spike‐wave discharges during petit mal seizures , 1994, Neuroreport.

[39]  D. Prince,et al.  Clonazepam suppresses GABAB-mediated inhibition in thalamic relay neurons through effects in nucleus reticularis. , 1994, Journal of neurophysiology.

[40]  M. Barbacid,et al.  Developmental expression of trkC, the neurotrophin-3 receptor, in the mammalian nervous system , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  Terrence J. Sejnowski,et al.  An Efficient Method for Computing Synaptic Conductances Based on a Kinetic Model of Receptor Binding , 1994, Neural Computation.

[42]  T. Sejnowski,et al.  A model for 8-10 Hz spindling in interconnected thalamic relay and reticularis neurons. , 1993, Biophysical journal.

[43]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[44]  T J Sejnowski,et al.  Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. , 1993, Biophysical journal.

[45]  D Contreras,et al.  Electrophysiological properties of cat reticular thalamic neurones in vivo. , 1993, The Journal of physiology.

[46]  D. McCormick,et al.  Cellular mechanisms of a synchronized oscillation in the thalamus. , 1993, Science.

[47]  Jacques Duysens,et al.  Thalamic multiple-unit activity underlying spike-wave discharges in anesthetized rats , 1993, Brain Research.

[48]  I. Módy,et al.  Characterization of synaptically elicited GABAB responses using patch‐clamp recordings in rat hippocampal slices. , 1993, The Journal of physiology.

[49]  W. A. Wilson,et al.  The role of GABAB receptor activation in absence seizures of lethargic (lh/lh) mice. , 1992, Science.

[50]  A. Depaulis,et al.  Involvement of intrathalamic GABA b neurotransmission in the control of absence seizures in the rat , 1992, Neuroscience.

[51]  O. Snead Evidence for GABAB-mediated mechanisms in experimental generalized absence seizures. , 1992, European journal of pharmacology.

[52]  A. Roach,et al.  Comparison of the effects of efaroxan and glibenclamide on plasma glucose and insulin levels in rats. , 1992, European journal of pharmacology.

[53]  M. Vergnes,et al.  Cortical and thalamic lesions in rats with genetic absence epilepsy. , 1992, Journal of neural transmission. Supplementum.

[54]  I. Soltesz,et al.  GABAA and pre- and post-synaptic GABAB receptor-mediated responses in the lateral geniculate nucleus. , 1992, Progress in brain research.

[55]  R. Traub,et al.  Neuronal Networks of the Hippocampus , 1991 .

[56]  A. Depaulis,et al.  Evidence for a critical role of GABAergic transmission within the thalamus in the genesis and control of absence seizures in the rat , 1991, Brain Research.

[57]  S N Davies,et al.  Paired‐pulse depression of monosynaptic GABA‐mediated inhibitory postsynaptic responses in rat hippocampus. , 1990, The Journal of physiology.

[58]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[59]  Martin Deschênes,et al.  Electrophysiology and Pharmacology of the Corticothalamic Input to Lateral Thalamic Nuclei: an Intracellular Study in the Cat , 1990, The European journal of neuroscience.

[60]  E. G. Jones,et al.  Thalamic oscillations and signaling , 1990 .

[61]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990, Bulletin of mathematical biology.

[62]  P. Gloor,et al.  Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy , 1988, Trends in Neurosciences.

[63]  G. Buzsáki,et al.  Nucleus basalis and thalamic control of neocortical activity in the freely moving rat , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  R. Nicoll,et al.  A physiological role for GABAB receptors in the central nervous system , 1988, Nature.

[65]  Idan Segev,et al.  Methods in Neuronal Modeling , 1988 .

[66]  P. Gloor,et al.  Transition from spindles to generalized spike and wave discharges in the cat: Simultaneous single-cell recordings in cortex and thalamus , 1984, Experimental Neurology.

[67]  M Steriade,et al.  Electrophysiology of neurons of lateral thalamic nuclei in cat: mechanisms of long-lasting hyperpolarizations. , 1984, Journal of neurophysiology.

[68]  A. Depaulis,et al.  Enhancement of spike and wave discharges by GABAmimetic drugs in rats with spontaneous petit-mallike epilepsy , 1984, Neuroscience Letters.

[69]  J Gotman,et al.  An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons. , 1983, Journal of neurophysiology.

[70]  P. Gloor,et al.  Participation of cortical recurrent inhibition in the genesis of spike and wave discharges in feline generalized penicillin epilepsy , 1983, Brain Research.

[71]  Massimo Avoli,et al.  Role of the thalamus in generalized penicillin epilepsy: Observations on decorticated cats , 1982, Experimental Neurology.

[72]  E. White,et al.  A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex , 1982, Journal of neurocytology.

[73]  P. Gloor,et al.  The Effects of Transient Functional Depression of the Thalamus on Spindles and on Bilateral Synchronous Epileptic Discharges of Feline Generalized Penicillin Epilepsy , 1981, Epilepsia.

[74]  Edward L. White,et al.  Thalamocortical synapses with corticothalamic projection neurons in mouse SmI cortex: Electron microscopic demonstration of a monosynaptic feedback loop , 1981, Neuroscience Letters.

[75]  J. Gotman,et al.  A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: Microphysiological features , 1981, Experimental Neurology.

[76]  P. Gloor,et al.  A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: EEG features , 1981, Experimental Neurology.

[77]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[78]  P. Gloor,et al.  Role of afferent input of subcortical origin in the genesis of bilaterally synchronous epileptic discharges of feline generalized penicillin epilepsy , 1979, Experimental Neurology.

[79]  P. Gloor,et al.  Effects of changes in cortical excitability upon the epileptic bursts in generalized penicillin epilepsy of the cat. , 1979, Electroencephalography and clinical neurophysiology.

[80]  L F Quesney,et al.  Pathophysiology of generalized penicillin epilepsy in the cat: the role of cortical and subcortical structures. II. Topical application of penicillin to the cerebral cortex and to subcortical structures. , 1977, Electroencephalography and clinical neurophysiology.

[81]  J H Satterfield,et al.  Evoked potentials and brain maturation in hyperactive and normal children. , 1977, Electroencephalography and clinical neurophysiology.

[82]  M Steriade,et al.  Interneuronal epileptic discharges related to spike-and-wave cortical seizures in behaving monkeys. , 1974, Electroencephalography and clinical neurophysiology.

[83]  M. Yahr,et al.  Corticothalamic projections and sensorimotor activities , 1972 .

[84]  W. Burke,et al.  Inhibitory mechanisms in lateral geniculate nucleus of rat , 1966, The Journal of physiology.

[85]  C. W. Watson,et al.  Bilateral synchronous spike wave electrographic patterns in the cat. Interaction of bilateral cortical foci in the intact, the bilateral cortical-callosal, and adiencephalic preparation. , 1966, Archives of neurology.

[86]  D. Pollen INTRACELLULAR STUDIES OF CORTICAL NEURONS DURING THALAMIC INDUCED WAVE AND SPIKE. , 1964, Electroencephalography and clinical neurophysiology.

[87]  R. Cohn DC RECORDINGS OF PAROXYSMAL DISORDERS IN MAN. , 1964, Electroencephalography and clinical neurophysiology.

[88]  C AJMONE-MARSAN,et al.  Thalamic control of certain normal and abnormal cortical rhythms. , 1956, Electroencephalography and clinical neurophysiology.

[89]  D. Williams,et al.  A study of thalamic and cortical rhythms in petit mal. , 1953, Brain : a journal of neurology.

[90]  H. Jasper,et al.  ELECTROENCEPHALOGRAPHIC CLASSIFICATION OF THE EPILEPSIES , 1941 .