Heuristic Space Diversity Measures for Population-based Hyper-heuristics

A hyper-heuristic is an optimization approach that continually selects the most appropriate heuristic(s) to apply to an optimization problem. Hyper-heuristics conduct a search in the space of heuristics, or heuristic space, for the most suitable heuristic to apply to candidate solutions in problem space. Traditionally, hyper-heuristics manage relatively simple low-level heuristics, which are often based on human domain intuition. Increasingly, hyper-heuristics are being used in conjunction with population-based meta-heuristics as the low-level heuristics. A heuristic space diversity measure helps practitioners understand the behavior of hyper-heuristics that manage population-based heuristics. This paper discusses existing measures to quantity heuristic space diversity, highlights shortcomings of these existing measures, and proposes a new heuristic space diversity entropy-based measure. Spatial and temporal volatility measures that characterize entity-to-heuristic assignments are also proposed.

[1]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[2]  Tad Hogg,et al.  An Economics Approach to Hard Computational Problems , 1997, Science.

[3]  Edmund K. Burke,et al.  A Research Agenda for Metaheuristic Standardization , 2015 .

[4]  Frédéric Saubion,et al.  Autonomous operator management for evolutionary algorithms , 2010, J. Heuristics.

[5]  Peter I. Cowling,et al.  Hyperheuristics: Recent Developments , 2008, Adaptive and Multilevel Metaheuristics.

[6]  Andries Petrus Engelbrecht,et al.  Analysis of global information sharing in hyper-heuristics for different dynamic environments , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[7]  Andries Petrus Engelbrecht,et al.  Alternative hyper-heuristic strategies for multi-method global optimization , 2010, IEEE Congress on Evolutionary Computation.

[8]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[9]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[10]  Jim Smith,et al.  A Memetic Algorithm With Self-Adaptive Local Search: TSP as a case study , 2000, GECCO.

[11]  Michel Gendreau,et al.  Hyper-heuristics: a survey of the state of the art , 2013, J. Oper. Res. Soc..

[12]  Riccardo Poli,et al.  There Is a Free Lunch for Hyper-Heuristics, Genetic Programming and Computer Scientists , 2009, EuroGP.

[13]  Andries Petrus Engelbrecht,et al.  Analysis of hyper-heuristic performance in different dynamic environments , 2014, 2014 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE).

[14]  Yu Wang,et al.  Self-adaptive learning based particle swarm optimization , 2011, Inf. Sci..

[15]  Andries Petrus Engelbrecht,et al.  Heuristic space diversity control for improved meta-hyper-heuristic performance , 2015, Inf. Sci..

[17]  Andries Petrus Engelbrecht,et al.  A Self-adaptive Heterogeneous PSO Inspired by Ants , 2012, ANTS.

[18]  Jürgen Branke,et al.  Memory enhanced evolutionary algorithms for changing optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[19]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[20]  Andries Petrus Engelbrecht,et al.  Towards a more complete classification system for dynamically changing environments , 2012, 2012 IEEE Congress on Evolutionary Computation.

[21]  Andries Petrus Engelbrecht,et al.  Heuristic space diversity management in a meta-hyper-heuristic framework , 2015, 2014 IEEE Congress on Evolutionary Computation (CEC).

[22]  Francisco Herrera,et al.  Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power , 2010, Inf. Sci..

[23]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[24]  Alexander Nareyek,et al.  Choosing search heuristics by non-stationary reinforcement learning , 2004 .

[25]  L. D. Whitley,et al.  The No Free Lunch and problem description length , 2001 .

[26]  David V Budescu,et al.  How to measure diversity when you must. , 2012, Psychological methods.

[27]  Andries Petrus Engelbrecht,et al.  A self-adaptive heterogeneous pso for real-parameter optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[28]  Alessandro Berti,et al.  No-Free-Lunch theorems in the continuum , 2014, Theor. Comput. Sci..

[29]  Marc Toussaint,et al.  On Classes of Functions for which No Free Lunch Results Hold , 2001, Inf. Process. Lett..

[30]  Changhe Li,et al.  A Self-Learning Particle Swarm Optimizer for Global Optimization Problems , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[31]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[32]  Olivier Teytaud,et al.  Continuous lunches are free! , 2007, GECCO '07.

[33]  Heike Trautmann,et al.  Automated Algorithm Selection: Survey and Perspectives , 2018, Evolutionary Computation.

[34]  Andries Petrus Engelbrecht,et al.  Multi-method algorithms: Investigating the entity-to-algorithm allocation problem , 2013, 2013 IEEE Congress on Evolutionary Computation.

[35]  Graham Kendall,et al.  A Classification of Hyper-heuristic Approaches , 2010 .

[36]  Andries Petrus Engelbrecht,et al.  Analysis of selection hyper-heuristics for population-based meta-heuristics in real-valued dynamic optimization , 2018, Swarm Evol. Comput..