Asymptotically exact error analysis for the generalized equation-LASSO

Given an unknown signal x<sub>0</sub> ∈ R<sup>n</sup> and linear noisy measurements y = Ax<sub>0</sub> + σv ∈ R<sup>m</sup>, the generalized ℓ<sub>2</sub><sup>2</sup>-LASSO solves x̂ := arg min<sup>x</sup> 1/2∥y-Ax ∥<sub>2</sub><sup>2</sup> + σλf(x). Here, f is a convex regularization function (e.g. ℓ<sub>1</sub>-norm, nuclearnorm) aiming to promote the structure of x<sub>0</sub> (e.g. sparse, lowrank), and, λ ≥ 0 is the regularizer parameter. A related optimization problem, though not as popular or well-known, is often referred to as the generalized ℓ<sub>2</sub>-LASSO and takes the form x̂̂̂ := arg min<sub>x</sub> ∥y-Ax∥<sub>2</sub> +λf(x), and has been analyzed by Oymak, Thrampoulidis and Hassibi. Oymak et al. further made conjectures about the performance of the generalized ℓ<sub>2</sub><sup>2</sup>-LASSO. This paper establishes these conjectures rigorously. We measure performance with the normalized squared error NSE(σ) := ∥x-x<sub>0</sub>∥<sub>2</sub><sup>2</sup>/(mσ<sup>2</sup>). Assuming the entries of A are i.i.d. Gaussian N (0,1/m) and those of v are i.i.d. N(0,1), we precisely characterize the “asymptotic NSE” aNSE := lim<sub>σ→0</sub> NSE(σ) when the problem dimensions tend to infinity in a proportional manner. The role of λ, f and x<sub>0</sub> is explicitly captured in the derived expression via means of a single geometric quantity, the Gaussian distance to the subdifferential. We conjecture that aNSE = sup<sub>σ>0</sub> NSE(σ). We include detailed discussions on the interpretation of our result, make connections to relevant literature and perform computational experiments that validate our theoretical findings.

[1]  R. Gill,et al.  Cox's regression model for counting processes: a large sample study : (preprint) , 1982 .

[2]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[3]  Christos Thrampoulidis,et al.  The squared-error of generalized LASSO: A precise analysis , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[4]  Christos Thrampoulidis,et al.  Simple error bounds for regularized noisy linear inverse problems , 2014, 2014 IEEE International Symposium on Information Theory.

[5]  Babak Hassibi,et al.  Asymptotically Exact Denoising in Relation to Compressed Sensing , 2013, ArXiv.

[6]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.

[7]  Richard G. Baraniuk,et al.  Asymptotic Analysis of Complex LASSO via Complex Approximate Message Passing (CAMP) , 2011, IEEE Transactions on Information Theory.

[8]  Joel A. Tropp,et al.  Living on the edge: A geometric theory of phase transitions in convex optimization , 2013, ArXiv.

[9]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[10]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[11]  Mihailo Stojnic,et al.  A framework to characterize performance of LASSO algorithms , 2013, ArXiv.

[12]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[13]  Christos Thrampoulidis,et al.  Precise error analysis of the LASSO , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[14]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[15]  Mihailo Stojnic,et al.  Various thresholds for ℓ1-optimization in compressed sensing , 2009, ArXiv.

[16]  Andrea Montanari,et al.  The Noise-Sensitivity Phase Transition in Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[17]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[18]  I. Johnstone,et al.  Minimax risk overlp-balls forlp-error , 1994 .

[19]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[20]  Y. Gordon On Milman's inequality and random subspaces which escape through a mesh in ℝ n , 1988 .

[21]  Sergio Verdú,et al.  Optimal Phase Transitions in Compressed Sensing , 2011, IEEE Transactions on Information Theory.

[22]  A. Belloni,et al.  Square-Root Lasso: Pivotal Recovery of Sparse Signals via Conic Programming , 2010, 1009.5689.

[23]  Andrea Montanari,et al.  The LASSO Risk for Gaussian Matrices , 2010, IEEE Transactions on Information Theory.

[24]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[25]  Christos Thrampoulidis,et al.  A Tight Version of the Gaussian min-max theorem in the Presence of Convexity , 2014, ArXiv.

[26]  Richard G. Baraniuk,et al.  From Denoising to Compressed Sensing , 2014, IEEE Transactions on Information Theory.