A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system

Abstract In this paper, new high order schemes are constructed and analyzed, for the numerical solution of Euler equations of isentropic gas dynamics. Material waves are treated explicitly, while acoustic waves are treated implicitly, thus avoiding severe CFL restrictions for low Mach flows. High order accuracy in space is obtained by finite difference WENO schemes; while high order in time is obtained by IMEX methods with semi-implicit linearization treatment. The schemes are proven to be asymptotic preserving and asymptotic accurate as the Mach number vanishes. Several tests in one and two space dimensions illustrate the effectiveness of the proposed schemes.

[1]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[2]  Raphaël Loubère,et al.  Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit , 2017, SIAM J. Sci. Comput..

[3]  Stéphane Dellacherie,et al.  Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number , 2010, J. Comput. Phys..

[4]  P. Colella,et al.  A Projection Method for Low Speed Flows , 1999 .

[5]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[6]  Giovanni Russo,et al.  On a Class of Uniformly Accurate IMEX Runge--Kutta Schemes and Applications to Hyperbolic Systems with Relaxation , 2009, SIAM J. Sci. Comput..

[7]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[8]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[9]  Raimund Bürger,et al.  Linearly Implicit IMEX Runge-Kutta Methods for a Class of Degenerate Convection-Diffusion Problems , 2015, SIAM J. Sci. Comput..

[10]  P. Degond,et al.  All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.

[11]  Raimund Bürger,et al.  On linearly implicit IMEX Runge-Kutta methods for degenerate convection-diffusion problems modeling polydisperse sedimentation , 2016 .

[12]  Volker John,et al.  Projection methods for incompressible flow problems with WENO finite difference schemes , 2015, J. Comput. Phys..

[13]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[14]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[15]  SEBASTIANO BOSCARINO Error Analysis of IMEX Runge-Kutta Methods Derived from Differential-Algebraic Systems , 2007, SIAM J. Numer. Anal..

[16]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[17]  P. V. F. Edelmann,et al.  New numerical solver for flows at various Mach numbers , 2014, 1409.8289.

[18]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[19]  Xiaolin Zhong,et al.  Additive Semi-Implicit Runge-Kutta Methods for Computing High-Speed Nonequilibrium Reactive Flows , 1996 .

[20]  Michael Dumbser,et al.  A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers , 2016, J. Comput. Phys..

[21]  Philippe G. LeFloch,et al.  High-Order Asymptotic-Preserving Methods for Fully Nonlinear Relaxation Problems , 2012, SIAM J. Sci. Comput..

[22]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[23]  Jian‐Guo Liu,et al.  An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations , 2012 .

[24]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[25]  Giovanni Russo,et al.  Flux-Explicit IMEX Runge-Kutta Schemes for Hyperbolic to Parabolic Relaxation Problems , 2013, SIAM J. Numer. Anal..

[26]  Giovanni Russo,et al.  Implicit-Explicit Integral Deferred Correction Methods for Stiff Problems , 2017, SIAM J. Sci. Comput..

[27]  Jianxian Qiu,et al.  An h-Adaptive RKDG Method for the Two-Dimensional Incompressible Euler Equations and the Guiding Center Vlasov Model , 2017, J. Sci. Comput..

[28]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[29]  Cécile Viozat,et al.  Implicit Upwind Schemes for Low Mach Number Compressible Flows , 1997 .

[30]  R. Winther,et al.  Numerical methods for incompressible viscous flow , 2002 .

[31]  Francis Filbet,et al.  High Order Semi-implicit Schemes for Time Dependent Partial Differential Equations , 2016, Journal of Scientific Computing.

[32]  Pierre Degond,et al.  An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations , 2011, J. Comput. Phys..

[33]  Giovanni Russo,et al.  All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics , 2017, Journal of Scientific Computing.

[34]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[35]  C. Munz,et al.  The extension of incompressible flow solvers to the weakly compressible regime , 2003 .

[36]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[37]  Donald Greenspan,et al.  Pressure method for the numerical solution of transient, compressible fluid flows , 1984 .

[38]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[39]  Eric Sonnendrücker,et al.  Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..

[40]  Felix Rieper,et al.  A low-Mach number fix for Roe's approximate Riemann solver , 2011, J. Comput. Phys..