Effective mutation rate for probabilistic evolutionary design of analogue electrical circuits

The paper represents the approach to evolutionary analogue circuit design on the base of the univariate marginal distribution algorithm. In order to generate a new population the probability distribution is used instead of reproduction operators. It allows us to control evolvability of a population on mesoscopic level. Experimental results obtained have indicated that a high mutation rate increases the success rate, although computational costs are increased too. The effective mutation rate that supplies high success rate and small computational costs is examined for different weightings of the fitness function.

[1]  Willy Sansen,et al.  Analog Circuit Design Optimization based on Symbolic Simulation and Simulated Annealing , 1989, ESSCIRC '89: Proceedings of the 15th European Solid-State Circuits Conference.

[2]  J. B. Grimbleby,et al.  Hybrid genetic algorithms for analogue network synthesis , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[3]  Rob A. Rutenbar,et al.  Anaconda: simulation-based synthesis of analog circuits viastochastic pattern search , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[4]  Fathey M. El-Turky,et al.  BLADES: an artificial intelligence approach to analog circuit design , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[5]  Heinz Mühlenbein,et al.  Evolutionary computation and Wright's equation , 2002, Theor. Comput. Sci..

[6]  John R. Koza Genetic Programming III - Darwinian Invention and Problem Solving , 1999, Evolutionary Computation.

[7]  Heinz Mühlenbein,et al.  A Comparison of Different Circuit Representations for Evolutionary Analog Circuit Design , 2003, ICES.

[8]  Lyudmila Zinchenko,et al.  Evolutionary Modeling with Hierarchy in Innovative Computer-Aided Circuit Design , 2002 .

[9]  Georges G. E. Gielen,et al.  AMGIE-A synthesis environment for CMOS analog integrated circuits , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  P.R. Gray,et al.  OPASYN: a compiler for CMOS operational amplifiers , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[11]  Domine Leenaerts,et al.  DARWIN: CMOS opamp Synthesis by Means of a Genetic Algorithm , 1995, 32nd Design Automation Conference.

[12]  Heinz Mühlenbein,et al.  Application of the univariate marginal distribution algorithm to analog circuit design , 2002, Proceedings 2002 NASA/DoD Conference on Evolvable Hardware.

[13]  Marley M. B. R. Vellasco,et al.  Comparison of different evolutionary methodologies applied to electronic filter design , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[14]  Rob A. Rutenbar,et al.  MAELSTROM: efficient simulation-based synthesis for custom analog cells , 1999, DAC '99.

[15]  Heinz Mühlenbein,et al.  The Equation for Response to Selection and Its Use for Prediction , 1997, Evolutionary Computation.

[16]  Alister Hamilton,et al.  Ant Circuit World: An Ant Algorithm MATLABTM Toolbox for the Design, Visualisation and Analysis of Analogue Circuits , 2001, ICES.

[17]  Yun Li,et al.  GA automated design and synthesis of analog circuits with practical constraints , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[18]  Lyudmila Zinchenko,et al.  Evolutionary design of electronic devices , 2000, ICECS 2000. 7th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.00EX445).

[19]  Rob A. Rutenbar,et al.  Synthesis of high-performance analog circuits in ASTRX/OBLX , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[20]  Jason D. Lohn,et al.  A circuit representation technique for automated circuit design , 1999, IEEE Trans. Evol. Comput..

[21]  J. Periaux,et al.  Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems , 2001 .

[22]  Rob A. Rutenbar,et al.  OASYS: a framework for analog circuit synthesis , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[23]  N. Biggs Algebraic Graph Theory: COLOURING PROBLEMS , 1974 .