### Cross-entropy and rare events for maximal cut and partition problems

We show how to solve the maximal cut and partition problems using a randomized algorithm based on the <i>cross-entropy</i> method. For the maximal cut problem, the proposed algorithm employs an auxiliary Bernoulli distribution, which transforms the original deterministic network into an associated stochastic one, called the <i>associated stochastic network</i> (ASN). Each iteration of the randomized algorithm for the ASN involves the following two phases:(1) Generation of random cuts using a multidimensional <i>Ber</i>(<b>p</b>) distribution and calculation of the associated cut lengths (objective functions) and some related quantities, such as rare-event probabilities.(2) Updating the parameter vector <b>p</b> on the basis of the data collected in the first phase.We show that the <i>Ber</i>(<b>p</b>) distribution converges in distribution to a degenerated one, <i>Ber</i>(<b>p</b><inf><i>d</i></inf><sup>*</sup>), <b>p</b><inf><i>d</i></inf><sup>*</sup> = (<i>pd</i>,1,...,<i>pd,n</i>) in the sense that someelements of <b>p</b><inf><i>d</i></inf><sup>*</sup>, will be unities and the rest zeros. The unity elements of <b>p</b><inf><i>d</i></inf><sup>*</sup> uniquely define a cut which will be taken as the estimate of the maximal cut. A similar approach is used for the partition problem. Supporting numerical results are given as well. Our numerical studies suggest that for the maximal cut and partition problems the proposed algorithm typically has polynomial complexity in the size of the network.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  S. M. Ali,et al.  A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .

[3]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[4]  G. Ding Discrete optimization , 1977 .

[5]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[6]  R. G. Parker,et al.  Introduction to Discrete Optimization , 1988 .

[7]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[8]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[9]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[10]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[11]  Weibo Gong,et al.  Stochastic comparison algorithm for discrete optimization with estimation , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[12]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[13]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[14]  László Lovász,et al.  Randomized algorithms in combinatorial optimization , 1993, Combinatorial Optimization.

[15]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[16]  Robert L. Smith,et al.  Simulated annealing for constrained global optimization , 1994, J. Glob. Optim..

[18]  S. Andradóttir A method for discrete stochastic optimization , 1995 .

[19]  János D. Pintér,et al.  Global optimization in action , 1995 .

[20]  Yves Crama,et al.  Local Search in Combinatorial Optimization , 2018, Artificial Neural Networks.

[21]  Giovanni Righini,et al.  Heuristics from Nature for Hard Combinatorial Optimization Problems , 1996 .

[22]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[23]  Victor J. Rayward-Smith,et al.  Modern Heuristic Search Methods , 1996 .

[24]  Gilbert Laporte,et al.  Metaheuristics: A bibliography , 1996, Ann. Oper. Res..

[25]  Sigrún Andradóttir,et al.  A Global Search Method for Discrete Stochastic Optimization , 1996, SIAM J. Optim..

[26]  Georg Ch. Pflug,et al.  Simulated Annealing for noisy cost functions , 1996, J. Glob. Optim..

[27]  Léon J. M. Rothkrantz,et al.  Ant-Based Load Balancing in Telecommunications Networks , 1996, Adapt. Behav..

[28]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[29]  M Dorigo,et al.  Ant colonies for the travelling salesman problem. , 1997, Bio Systems.

[30]  R. Rubinstein,et al.  Quick estimation of rare events in stochastic networks , 1997 .

[31]  Corso Elvezia,et al.  Ant colonies for the traveling salesman problem , 1997 .

[32]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[33]  Marco Dorigo,et al.  AntNet: Distributed Stigmergetic Control for Communications Networks , 1998, J. Artif. Intell. Res..

[34]  Georg Ch. Pflug,et al.  A branch and bound method for stochastic global optimization , 1998, Math. Program..

[35]  Thomas Stützle,et al.  ACO algorithms for the quadratic assignment problem , 1999 .

[36]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[37]  Israel A. Wagner,et al.  Distributed covering by ant-robots using evaporating traces , 1999, IEEE Trans. Robotics Autom..

[38]  R. Rubinstein The Cross-Entropy Method for Combinatorial and Continuous Optimization , 1999 .

[39]  H. Cohn,et al.  Simulated Annealing: Searching for an Optimal Temperature Schedule , 1999, SIAM J. Optim..

[40]  Leyuan Shi,et al.  New parallel randomized algorithms for the traveling salesman problem , 1999, Comput. Oper. Res..

[41]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[42]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[43]  Walter J. Gutjahr,et al.  A Graph-based Ant System and its convergence , 2000, Future Gener. Comput. Syst..

[44]  Yu-Chi Ho,et al.  Stochastic Comparison Algorithm for Discrete Optimization with Estimation , 1999, SIAM J. Optim..

[45]  Israel A. Wagner,et al.  ANTS: Agents on Networks, Trees, and Subgraphs , 2000, Future Gener. Comput. Syst..

[46]  Leyuan Shi,et al.  Nested Partitions Method for Global Optimization , 2000, Oper. Res..

[47]  Reiner Horst,et al.  Introduction to Global Optimization (Nonconvex Optimization and Its Applications) , 2002 .

[48]  Ehl Emile Aarts,et al.  Simulated annealing and Boltzmann machines , 2003 .

[49]  W. Gutjahr A GENERALIZED CONVERGENCE RESULT FOR THE GRAPH-BASED ANT SYSTEM METAHEURISTIC , 2003, Probability in the Engineering and Informational Sciences.

[50]  Israel A. Wagner,et al.  Efficiently searching a graph by a smell-oriented vertex process , 2004, Annals of Mathematics and Artificial Intelligence.