Array Algorithms for H 2 and H ∞ Estimation

Currently, the preferred method for implementing H2 estimation algorithms is what is called the array form, and includes two main families: square-root array algorithms, that are typically more stable than conventional ones, and fast array algorithms, which, when the system is time-invariant, typically offer an order of magnitude reduction in the computational effort. Using our recent observation that H ∞ filtering coincides with Kalman filtering in Krein space, in this chapter we develop array algorithms for H∞ filtering. These can be regarded as natural generalizations of their H2 counterparts, and involve propagating the indefinite square roots of the quantities of interest. The H ∞ square-root and fast array algorithms both have the interesting feature that one does not need to explicitly check for the positivity conditions required for the existence of H ∞ filters. These conditions are built into the algorithms themselves so that an H ∞ estimator of the desired level exists if, and only if, the algorithms can be executed. However, since H ∞ square-root algorithms predominantly use J-unitary transformations, rather than the unitary transformations required in the H2 case, further investigation is needed to determine the numerical behavior of such algorithms.

[1]  G. Golub,et al.  Linear least squares solutions by householder transformations , 1965 .

[2]  Ali H. Sayed,et al.  Stabilizing the Generalized Schur Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[3]  V. I. Istratescu,et al.  Inner Product Structures: Theory and Applications , 1987 .

[4]  M. Morf,et al.  Displacement ranks of matrices and linear equations , 1979 .

[5]  T. Kailath,et al.  Indefinite-quadratic estimation and control: a unified approach to H 2 and H ∞ theories , 1999 .

[6]  Pramod P. Khargonekar,et al.  FILTERING AND SMOOTHING IN AN H" SETTING , 1991 .

[7]  M. Morf,et al.  Some new algorithms for recursive estimation in constant, linear, discrete-time systems , 1974 .

[8]  J. Bognár,et al.  Indefinite Inner Product Spaces , 1974 .

[9]  U. Shaked,et al.  H/sub infinity /-optimal estimation: a tutorial , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[10]  P. Morse,et al.  Principles of Numerical Analysis , 1954 .

[11]  Babak Hassibi Indefinite metric spaces in estimation, control and adaptive filtering , 1996 .

[12]  K. Glover,et al.  Minimum entropy H ∞ control , 1990 .

[13]  Babak Hassibiy,et al.  Linear Estimation in Krein Spaces -part Ii: Applications , 1996 .

[14]  P. Whittle Risk-Sensitive Optimal Control , 1990 .

[15]  T. Basar,et al.  H∞-0ptimal Control and Related Minimax Design Problems: A Dynamic Game Approach , 1996, IEEE Trans. Autom. Control..

[16]  A. Bryson,et al.  Discrete square root filtering: A survey of current techniques , 1971 .

[17]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[18]  K. J. Ray Liu,et al.  A unified square-root-free approach for QRD-based recursive-least-squares estimation , 1993, IEEE Trans. Signal Process..

[19]  J. Rice Experiments on Gram-Schmidt orthogonalization , 1966 .

[20]  Gene H. Golub,et al.  Matrix computations , 1983 .

[21]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[22]  T. Kailath,et al.  Linear estimation in Krein spaces. II. Applications , 1996, IEEE Trans. Autom. Control..

[23]  Allan O. Steinhardt,et al.  Stability Analysis of a Householder-Based Algorithm for Downdating the Cholesky Factorization , 1991, SIAM J. Sci. Comput..

[24]  S. Mcreynolds,et al.  Extension of square-root filtering to include process noise , 1969 .

[25]  Tamer Bąar Optimum performance levels for minimax filters, predictors and smoothers , 1991 .

[26]  Ali H. Sayed,et al.  Displacement Structure: Theory and Applications , 1995, SIAM Rev..

[27]  P. Morse,et al.  Principles of Numerical Analysis , 1954 .

[28]  G. Naber The geometry of Minkowski spacetime : an introduction to the mathematics of the special theory of relativity , 1992 .

[29]  Tamer Başar,et al.  H1-Optimal Control and Related Minimax Design Problems , 1995 .

[30]  Keith Glover,et al.  Minimum entropy H[infinity] control , 1990 .

[31]  Birger Iversen,et al.  Hyperbolic Geometry: FUCHSIAN GROUPS , 1993 .

[32]  Ali H. Sayed,et al.  Linear Estimation in Krein Spaces - Part I: Theory , 1996 .

[33]  M. Morf,et al.  Square-root algorithms for least-squares estimation , 1975 .

[34]  Ali H. Sayed,et al.  Extended Chandrasekhar recursions , 1994, IEEE Trans. Autom. Control..

[35]  G. Strang Introduction to Linear Algebra , 1993 .

[36]  J. W. Schutz,et al.  Foundations of special relativity: kinematic axioms for Minkowski space-time , 1972, Bulletin of the Australian Mathematical Society.

[37]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[38]  G. Stewart Introduction to matrix computations , 1973 .

[39]  U. Shaked,et al.  H,-OPTIMAL ESTIMATION: A TUTORIAL , 1992 .

[40]  T. Kailath,et al.  Linear estimation in Krein spaces. I. Theory , 1996, IEEE Trans. Autom. Control..

[41]  Tomás Lang,et al.  Matrix Computations on Systolic-Type Arrays , 1992 .

[42]  H. Langer,et al.  Introduction to the spectral theory of operators in spaces with an indefinite metric , 1982 .

[43]  A. Einstein Relativity: The Special and the General Theory , 2015 .

[44]  P. Khargonekar,et al.  Filtering and smoothing in an H/sup infinity / setting , 1991 .

[45]  H. Harter The Method of Least Squares and Some Alternatives. , 1972 .

[46]  W. E. Gentleman Least Squares Computations by Givens Transformations Without Square Roots , 1973 .

[47]  Thomas Kailath,et al.  Some new algorithms for recursive estimation in constant linear systems , 1973, IEEE Trans. Inf. Theory.

[48]  W. Fenchel Elementary Geometry in Hyperbolic Space , 1989 .