Self-Organizing Map Formation: Foundations of Neural Computation

From the Publisher: This book provides an overview of self-organizing map formation, including recent developments. Self-organizing maps form a branch of unsupervised learning, which is the study of what can be determined about the statistical properties of input data without explicit feedback from a teacher. The articles are drawn from the journal Neural Computation. The book consists of five sections. The first section looks at attempts to model the organization of cortical maps and at the theory and applications of the related artificial neural network algorithms. The second section analyzes topographic maps and their formation via objective functions. The third section discusses cortical maps of stimulus features. The fourth section discusses self-organizing maps for unsupervised data analysis. The fifth section discusses extensions of self-organizing maps, including two surprising applications of mapping algorithms to standard computer science problems: combinatorial optimization and sorting. Contributors J. J. Atick, H. G. Barrow, H. U. Bauer, C. M. Bishop, H. J. Bray, J. Bruske, J. M. L. Budd, M. Budinich, V. Cherkassky, J. Cowan, R. Durbin, E. Erwin, G. J. Goodhill, T. Graepel, D. Grier, S. Kaski, T. Kohonen, H. Lappalainen, Z. Li, J. Lin, R. Linsker, S. P. Luttrell, D. J. C. MacKay, K. D. Miller, G. Mitchison, F. Mulier, K. Obermayer, C. Piepenbrock, H. Ritter, K. Schulten, T. J. Sejnowski, S. Smirnakis, G. Sommer, M. Svensen, R. Szeliski, A. Utsugi, C. K. I. Williams, L. Wiskott, L. Xu, A. Yuille, J. Zhang.

[1]  HofmannThomas,et al.  Pairwise Data Clustering by Deterministic Annealing , 1997 .

[2]  C. Malsburg,et al.  How patterned neural connections can be set up by self-organization , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[3]  Klaus Schulten,et al.  Self-organizing maps and adaptive filters , 1991 .

[4]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[5]  Joachim M. Buhmann,et al.  Pairwise Data Clustering by Deterministic Annealing , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  C. Shatz,et al.  Developmental mechanisms that generate precise patterns of neuronal connectivity , 1993, Cell.

[7]  Shun-ichi Amari,et al.  Field theory of self-organizing neural nets , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[9]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[10]  J. Cowan,et al.  Specificity and plasticity of retinotectal connections: a computational model , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  P. Dayan,et al.  A correlational model for the development of disparity selectivity in visual cortex that depends on prenatal and postnatal phases. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[12]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[13]  T. Sejnowski,et al.  Irresistible environment meets immovable neurons , 1997, Behavioral and Brain Sciences.

[14]  N. Swindale The development of topography in the visual cortex: a review of models. , 1996, Network.

[15]  Mark E Nelson,et al.  Brain maps and parallel computers , 1990, Trends in Neurosciences.

[16]  T. Wiesel,et al.  Functional architecture of cortex revealed by optical imaging of intrinsic signals , 1986, Nature.

[17]  Richard Durbin,et al.  A dimension reduction framework for understanding cortical maps , 1990, Nature.

[18]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[19]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources , 1999, Neural Comput..