Training Algorithms for Hidden Markov Models using Entropy Based Distance Functions

We present new algorithms for parameter estimation of HMMs. By adapting a framework used for supervised learning, we construct iterative algorithms that maximize the likelihood of the observations while also attempting to stay "close" to the current estimated parameters. We use a bound on the relative entropy between the two HMMs as a distance measure between them. The result is new iterative training algorithms which are similar to the EM (Baum-Welch) algorithm for training HMMs. The proposed algorithms are composed of a step similar to the expectation step of Baum-Welch and a new update of the parameters which replaces the maximization (re-estimation) step. The algorithm takes only negligibly more time per iteration and an approximated version uses the same expectation step as Baum-Welch. We evaluate experimentally the new algorithms on synthetic and natural speech pronunciation data. For sparse models, i.e. models with relatively small number of non-zero parameters, the proposed algorithms require significantly fewer iterations.