Riemannian Sparse Coding for Positive Definite Matrices

Inspired by the great success of sparse coding for vector valued data, our goal is to represent symmetric positive definite (SPD) data matrices as sparse linear combinations of atoms from a dictionary, where each atom itself is an SPD matrix. Since SPD matrices follow a non-Euclidean (in fact a Riemannian) geometry, existing sparse coding techniques for Euclidean data cannot be directly extended. Prior works have approached this problem by defining a sparse coding loss function using either extrinsic similarity measures (such as the log-Euclidean distance) or kernelized variants of statistical measures (such as the Stein divergence, Jeffrey’s divergence, etc.). In contrast, we propose to use the intrinsic Riemannian distance on the manifold of SPD matrices. Our main contribution is a novel mathematical model for sparse coding of SPD matrices; we also present a computationally simple algorithm for optimizing our model. Experiments on several computer vision datasets showcase superior classification and retrieval performance compared with state-of-the-art approaches.

[1]  Tanaya Guha,et al.  Learning Sparse Representations for Human Action Recognition , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Axel Pinz,et al.  Computer Vision – ECCV 2006 , 2006, Lecture Notes in Computer Science.

[3]  Duc Fehr Covariance Based Point Cloud Descriptors for Object Detection and Classification , 2013 .

[4]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[5]  Vassilios Morellas,et al.  Compact covariance descriptors in 3D point clouds for object recognition , 2012, 2012 IEEE International Conference on Robotics and Automation.

[6]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[7]  Peter A. Flach,et al.  Evaluation Measures for Multi-class Subgroup Discovery , 2009, ECML/PKDD.

[8]  Brian C. Lovell,et al.  Sparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach , 2012, ECCV.

[9]  S. Sra Positive definite matrices and the S-divergence , 2011, 1110.1773.

[10]  Kenneth I. Laws,et al.  Rapid Texture Identification , 1980, Optics & Photonics.

[11]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[12]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[13]  Vassilios Morellas,et al.  Dirichlet process mixture models on symmetric positive definite matrices for appearance clustering in video surveillance applications , 2011, CVPR 2011.

[14]  Larry S. Davis,et al.  Learning Discriminative Appearance-Based Models Using Partial Least Squares , 2009, 2009 XXII Brazilian Symposium on Computer Graphics and Image Processing.

[15]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[16]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[17]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[18]  José Mario Martínez,et al.  Algorithm 813: SPG—Software for Convex-Constrained Optimization , 2001, TOMS.

[19]  Bingpeng Ma,et al.  BiCov: a novel image representation for person re-identification and face verification , 2012, BMVC.

[20]  Baba C. Vemuri,et al.  On A Nonlinear Generalization of Sparse Coding and Dictionary Learning , 2013, ICML.

[21]  Fatih Murat Porikli,et al.  Region Covariance: A Fast Descriptor for Detection and Classification , 2006, ECCV.

[22]  Hongdong Li,et al.  Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  R. Bhatia Positive Definite Matrices , 2007 .

[24]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[25]  Michael Elad,et al.  Image Denoising Via Learned Dictionaries and Sparse representation , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[26]  Yuwei Wu,et al.  Affine Object Tracking Using Kernel-Based Region Covariance Descriptors , 2011 .

[27]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  S. Sra Positive definite matrices and the Symmetric Stein Divergence , 2011 .

[29]  Vassilios Morellas,et al.  Tensor Sparse Coding for Region Covariances , 2010, ECCV.

[30]  Xuelong Li,et al.  Gabor-Based Region Covariance Matrices for Face Recognition , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[31]  Lei Zhang,et al.  Log-Euclidean Kernels for Sparse Representation and Dictionary Learning , 2013, 2013 IEEE International Conference on Computer Vision.

[32]  Anoop Cherian,et al.  Generalized Dictionary Learning for Symmetric Positive Definite Matrices with Application to Nearest Neighbor Retrieval , 2011, ECML/PKDD.

[33]  Thomas Deselaers,et al.  ClassCut for Unsupervised Class Segmentation , 2010, ECCV.

[34]  Mark W. Schmidt,et al.  Optimizing Costly Functions with Simple Constraints: A Limited-Memory Projected Quasi-Newton Algorithm , 2009, AISTATS.

[35]  Dieter Fox,et al.  A large-scale hierarchical multi-view RGB-D object dataset , 2011, 2011 IEEE International Conference on Robotics and Automation.

[36]  Janusz Konrad,et al.  Action Recognition Using Sparse Representation on Covariance Manifolds of Optical Flow , 2010, 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[37]  Matthieu Guillaumin,et al.  Segmentation Propagation in ImageNet , 2012, ECCV.

[38]  Rachid Deriche,et al.  Texture and color segmentation based on the combined use of the structure tensor and the image components , 2008, Signal Process..