Time and Energy Efficient Matrix Factorization Using FPGAs

In this paper, new algorithms and architectures for matrix factorization are presented. Two fully-parallel and block-based designs for LU decomposition on configurable devices are proposed. A linear array architecture is employed to minimize the usage of long interconnects, leading to lower energy dissipation. The designs are made scalable by using a fixed I/O bandwidth independent of the problem size. High level models for energy profiling are built and the energy performance of many possible designs is predicted. Through the analysis of design tradeoffs, the block size that minimizes the total energy dissipation is identified. A set of candidate designs was implemented on the Xilinx Virtex-II to verify the estimates. Also, the performance of our designs is compared with that of state-of-the-art DSP based designs and with the performance of designs obtained using a state-of-the-art commercial compilation tool such as Celoxica DK1. Our designs on the FPGAs are significantly more time and energy efficient in both cases.