Computing the external geodesic diameter of a simple polygon

Given a simple polygonP ofn vertices, we present an algorithm that finds the pair of points on the boundary ofP that maximizes theexternal shortest path between them. This path is defined as theexternal geodesic diameter ofP. The algorithm takes0(n2) time and requires0(n) space. Surprisingly, this problem is quite different from that of computing theinternal geodesic diameter ofP. While the internal diameter is determined by a pair of vertices ofP, this is not the case for the external diameter. Finally, we show how this algorithm can be extended to solve theall external geodesic furthest neighbours problem.ZusammenfassungGegeben sei ein einfaches PolygonP mitn Ecken. Wir geben einen Algorithmus an, der ein Punktepaar auf der Begrenzung vonP liefert, welches die Länge des kürzesten Weges maximiert, der im Äußeren des Polygons verläuft. Den Weg bezeichnen wir als den äußeren geodätischen Durchmesser vonP. Unser Algorithmus benötigt 0(n2) Zeit und erfordert 0(n) Speicherplatz. Zu unserer Überraschung ist das Problem von dem, der Berechnung des inneren geodätischen Durchmessers vonP völlig verschieden. Während der innere Durchmesser immer in Ecken vonP endet, muß dies für den äußeren Durchmesser nicht der Fall sein. Schließlich zeigen wir noch, daß der Algorithmus so erweitert werden kann, daß er das Problem der entferntesten äußeren geodätischen Nachbarn löst.

[1]  Micha Sharir,et al.  On Shortest Paths in Polyhedral Spaces , 1986, SIAM J. Comput..

[2]  H. Davenport,et al.  A Combinatorial Problem Connected with Differential Equations , 1965 .

[3]  Kurt Mehlhorn,et al.  A new data structure for representing sorted lists , 1980, Acta Informatica.

[4]  Leonidas J. Guibas,et al.  Optimal Shortest Path Queries in a Simple Polygon , 1989, J. Comput. Syst. Sci..

[5]  E. Szemerédi On a problem of Davenport and Schinzel , 1974 .

[6]  Andrzej Lingas,et al.  On approximation behavior of the greedy triangulation for convex polygons , 2005, Algorithmica.

[7]  J. Reif,et al.  Shortest Paths in Euclidean Space with Polyhedral Obstacles. , 1985 .

[8]  Bernard Chazelle,et al.  A theorem on polygon cutting with applications , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[9]  Leonidas J. Guibas,et al.  Linear time algorithms for visibility and shortest path problems inside simple polygons , 2011, SCG '86.

[10]  James A. Storer,et al.  Minimizing turns for discrete movement in the interior of a polygon , 1987, IEEE J. Robotics Autom..

[11]  Micha Sharir,et al.  Computing the geodesic center of a simple polygon , 1989, Discret. Comput. Geom..

[12]  D. Mount On Finding Shortest Paths on Convex Polyhedra. , 1985 .

[13]  G. Toussaint Computing geodesic properties inside a simple polygon , 1989 .

[14]  Subhash Suri The all-geodesic furthest neighbor problem for simple polygons , 1987, SCG '87.

[15]  Leonidas J. Guibas,et al.  A new representation for linear lists , 1977, STOC '77.

[16]  G. Toussaint,et al.  Computing the Geodesic Center of a Simple Polygon , 1987 .

[17]  Leonidas J. Guibas,et al.  Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons , 1987, Algorithmica.

[18]  Leonidas J. Guibas,et al.  Visibility-polygon search and euclidean shortest paths , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[19]  D. T. Lee,et al.  Euclidean shortest paths in the presence of rectilinear barriers , 1984, Networks.

[20]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..