Cortical gamma band synchronization through somatostatin interneurons

Gamma band rhythms may synchronize distributed cell assemblies to facilitate information transfer within and across brain areas, yet their underlying mechanisms remain hotly debated. Most circuit models postulate that soma-targeting parvalbumin-positive GABAergic neurons are the essential inhibitory neuron subtype necessary for gamma rhythms. Using cell-type-specific optogenetic manipulations in behaving animals, we show that dendrite-targeting somatostatin (SOM) interneurons are critical for a visually induced, context-dependent gamma rhythm in visual cortex. A computational model independently predicts that context-dependent gamma rhythms depend critically on SOM interneurons. Further in vivo experiments show that SOM neurons are required for long-distance coherence across the visual cortex. Taken together, these data establish an alternative mechanism for synchronizing distributed networks in visual cortex. By operating through dendritic and not just somatic inhibition, SOM-mediated oscillations may expand the computational power of gamma rhythms for optimizing the synthesis and storage of visual perceptions.

[1]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[2]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[4]  C. Gray,et al.  Visually evoked oscillations of membrane potential in cells of cat visual cortex. , 1992, Science.

[5]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[6]  W. Singer,et al.  Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus , 1996, Nature.

[7]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[8]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[9]  B. McNaughton,et al.  Paradoxical Effects of External Modulation of Inhibitory Interneurons , 1997, The Journal of Neuroscience.

[10]  Michael N. Shadlen,et al.  Synchrony Unbound A Critical Evaluation of the Temporal Binding Hypothesis , 1999, Neuron.

[11]  A. Thiele,et al.  Neuronal synchrony does not correlate with motion coherence in cortical area MT , 2003, Nature.

[12]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[13]  A. Agmon,et al.  Distinct Subtypes of Somatostatin-Containing Neocortical Interneurons Revealed in Transgenic Mice , 2006, The Journal of Neuroscience.

[14]  D. W. Wheeler,et al.  Brightness Induction: Rate Enhancement and Neuronal Synchronization as Complementary Codes , 2006, Neuron.

[15]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[16]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[17]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[18]  Judit K. Makara,et al.  Compartmentalized dendritic plasticity and input feature storage in neurons , 2008, Nature.

[19]  A. Thiele,et al.  Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1 , 2008, The European journal of neuroscience.

[20]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[21]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[22]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[23]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[24]  Xin Wang,et al.  Retinal Oscillations Carry Visual Information to Cortex , 2008, Front. Syst. Neurosci..

[25]  Evan S. Schaffer,et al.  Inhibitory Stabilization of the Cortical Network Underlies Visual Surround Suppression , 2009, Neuron.

[26]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[27]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[28]  Jack W. Tsao,et al.  Observed brain dynamics, P.P. Mitra, H. Bokil. Oxford University Press (2008), ISBN-13: 978-0-19-517808-1, 381 pages, $65.00 , 2009 .

[29]  Partha P. Mitra,et al.  Chronux: A platform for analyzing neural signals , 2010, Journal of Neuroscience Methods.

[30]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[31]  J. Epelbaum,et al.  Somatostatin Contributes to In Vivo Gamma Oscillation Modulation and Odor Discrimination in the Olfactory Bulb , 2010, The Journal of Neuroscience.

[32]  W. Singer,et al.  Abnormal neural oscillations and synchrony in schizophrenia , 2010, Nature Reviews Neuroscience.

[33]  J. Maunsell,et al.  Differences in Gamma Frequencies across Visual Cortex Restrict Their Possible Use in Computation , 2010, Neuron.

[34]  Alexander L. Green Cortical Oscillations in Health and Disease. Oxford Univ. Press, New York (2010), June, Color plates, Hard cover, 448 pp, $74.95., ISBN: 978-0-19-534279-6 , 2010 .

[35]  H. Adesnik,et al.  Lateral competition for cortical space by layer-specific horizontal circuits , 2010, Nature.

[36]  Martin Vinck,et al.  The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization , 2010, NeuroImage.

[37]  Daniel N Hill,et al.  Quality Metrics to Accompany Spike Sorting of Extracellular Signals , 2011, The Journal of Neuroscience.

[38]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[39]  M. A. Smith,et al.  Stimulus Selectivity and Spatial Coherence of Gamma Components of the Local Field Potential , 2011, The Journal of Neuroscience.

[40]  Fiona E. N. LeBeau,et al.  Multiple origins of the cortical gamma rhythm , 2011, Developmental neurobiology.

[41]  H. Adesnik,et al.  A neural circuit for spatial summation in visual cortex , 2012, Nature.

[42]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[43]  M. Carandini,et al.  Parvalbumin-Expressing Interneurons Linearly Transform Cortical Responses to Visual Stimuli , 2012, Neuron.

[44]  Nathan R. Wilson,et al.  Division and subtraction by distinct cortical inhibitory networks in vivo , 2012, Nature.

[45]  T. Womelsdorf,et al.  Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas , 2012, Neuron.

[46]  Spencer L. Smith,et al.  Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo , 2013, Nature.

[47]  Khalid Hamandi,et al.  The properties of induced gamma oscillations in human visual cortex show individual variability in their dependence on stimulus size , 2013, NeuroImage.

[48]  E. Sibille,et al.  Reduced brain somatostatin in mood disorders: a common pathophysiological substrate and drug target? , 2013, Front. Pharmacol..

[49]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[50]  A. Kohn,et al.  No Consistent Relationship between Gamma Power and Peak Frequency in Macaque Primary Visual Cortex , 2013, The Journal of Neuroscience.

[51]  Bernardo Rudy,et al.  Channelrhodopsin-assisted patching: in vivo recording of genetically and morphologically identified neurons throughout the brain. , 2014, Cell reports.

[52]  Y. Dan,et al.  Long-range and local circuits for top-down modulation of visual cortex processing , 2014, Science.

[53]  T. Sejnowski,et al.  Cortical oscillations arise from contextual interactions that regulate sparse coding , 2014, Proceedings of the National Academy of Sciences.

[54]  Terrence J. Sejnowski,et al.  Regulating Cortical Oscillations in an Inhibition-Stabilized Network , 2014, Proceedings of the IEEE.

[55]  Hillel Adesnik,et al.  A direct translaminar inhibitory circuit tunes cortical output , 2015, Nature Neuroscience.

[56]  Martin Vinck,et al.  Arousal and Locomotion Make Distinct Contributions to Cortical Activity Patterns and Visual Encoding , 2014, Neuron.

[57]  On the Origin and Modulation of Narrow-Band Gamma Oscillations in Mouse Primary Visual Cortex , 2016 .

[58]  Terrence J. Sejnowski,et al.  Abnormal Gamma Oscillations in N-Methyl-D-Aspartate Receptor Hypofunction Models of Schizophrenia , 2016, Biological Psychiatry.

[59]  Rafael Yuste,et al.  Somatostatin Interneurons Control a Key Component of Mismatch Negativity in Mouse Visual Cortex. , 2016, Cell reports.

[60]  Brent Doiron,et al.  Inhibitory stabilization and visual coding in cortical circuits with multiple interneuron subtypes. , 2016, Journal of neurophysiology.

[61]  Cyriel M. A. Pennartz,et al.  Membrane Potential Dynamics of Spontaneous and Visually Evoked Gamma Activity in V1 of Awake Mice , 2016, PLoS biology.

[62]  Markus M. Hilscher,et al.  Chrna2-Martinotti Cells Synchronize Layer 5 Type A Pyramidal Cells via Rebound Excitation , 2017, PLoS biology.

[63]  M. Carandini,et al.  Subcortical Source and Modulation of the Narrowband Gamma Oscillation in Mouse Visual Cortex , 2016, Neuron.

[64]  Franck P. Martial,et al.  Modulation of Fast Narrowband Oscillations in the Mouse Retina and dLGN According to Background Light Intensity , 2017, Neuron.