An adaptive Metropolis algorithm

A proper choice of a proposal distribution for Markov chain Monte Carlo methods, for example for the Metropolis-Hastings algorithm, is well known to be a crucial factor for the convergence of the algorithm. In this paper we introduce an adaptive Metropolis (AM) algorithm, where the Gaussian proposal distribution is updated along the process using the full information cumulated so far. Due to the adaptive nature of the process, the AM algorithm is non-Markovian, but we establish here that it has the correct ergodic properties. We also include the results of our numerical tests, which indicate that the AM algorithm competes well with traditional Metropolis-Hastings algorithms, and demonstrate that the AM algorithm is easy to use in practical computation.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  R. Dobrushin Central Limit Theorem for Nonstationary Markov Chains. II , 1956 .

[3]  J. Neveu,et al.  Mathematical foundations of the calculus of probability , 1965 .

[4]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[5]  D. McLeish A Maximal Inequality and Dependent Strong Laws , 1975 .

[6]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[7]  E. Nummelin General irreducible Markov chains and non-negative operators: Embedded renewal processes , 1984 .

[8]  Kurt Mueller-Vollmer,et al.  Addresses of the Authors , 1990 .

[9]  M. Evans Chaining Via Annealing , 1991 .

[10]  H. Haario,et al.  Simulated annealing process in general state space , 1991, Advances in Applied Probability.

[11]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[12]  Walter R. Gilks,et al.  Adaptive Direction Sampling , 1994 .

[13]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[14]  A. Gelfand,et al.  On Markov Chain Monte Carlo Acceleration , 1994 .

[15]  David J. Spiegelhalter,et al.  Introducing Markov chain Monte Carlo , 1995 .

[16]  Walter R. Gilks,et al.  Strategies for improving MCMC , 1995 .

[17]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[18]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[19]  J. Davidson,et al.  Strong laws of large numbers for dependent heterogeneous processes: a synthesis of recent and new results , 1997 .

[20]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[21]  G. Roberts,et al.  Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .

[22]  Eero Saksman,et al.  Adaptive proposal distribution for random walkMetropolis , 1999 .

[23]  Heikki Haario,et al.  Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..

[24]  Anatoly Zhigljavsky,et al.  Self-regenerative Markov chain Monte Carlo with adaptation , 2003 .