An adaptive Metropolis algorithm
暂无分享,去创建一个
[1] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[2] R. Dobrushin. Central Limit Theorem for Nonstationary Markov Chains. II , 1956 .
[3] J. Neveu,et al. Mathematical foundations of the calculus of probability , 1965 .
[4] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[5] D. McLeish. A Maximal Inequality and Dependent Strong Laws , 1975 .
[6] P. Hall,et al. Martingale Limit Theory and Its Application , 1980 .
[7] E. Nummelin. General irreducible Markov chains and non-negative operators: Embedded renewal processes , 1984 .
[8] Kurt Mueller-Vollmer,et al. Addresses of the Authors , 1990 .
[9] M. Evans. Chaining Via Annealing , 1991 .
[10] H. Haario,et al. Simulated annealing process in general state space , 1991, Advances in Applied Probability.
[11] G. Parisi,et al. Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.
[12] Walter R. Gilks,et al. Adaptive Direction Sampling , 1994 .
[13] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[14] A. Gelfand,et al. On Markov Chain Monte Carlo Acceleration , 1994 .
[15] David J. Spiegelhalter,et al. Introducing Markov chain Monte Carlo , 1995 .
[16] Walter R. Gilks,et al. Strategies for improving MCMC , 1995 .
[17] Ronald L. Wasserstein,et al. Monte Carlo: Concepts, Algorithms, and Applications , 1997 .
[18] Sylvia Richardson,et al. Markov Chain Monte Carlo in Practice , 1997 .
[19] J. Davidson,et al. Strong laws of large numbers for dependent heterogeneous processes: a synthesis of recent and new results , 1997 .
[20] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[21] G. Roberts,et al. Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .
[22] Eero Saksman,et al. Adaptive proposal distribution for random walkMetropolis , 1999 .
[23] Heikki Haario,et al. Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..
[24] Anatoly Zhigljavsky,et al. Self-regenerative Markov chain Monte Carlo with adaptation , 2003 .