On Proving Linear Convergence of Comparison-based Step-size Adaptive Randomized Search on Scaling-Invariant Functions via Stability of Markov Chains

In the context of numerical optimization, this paper develops a methodology to analyze the linear convergence of comparison-based step-size adaptive randomized search (CB-SARS), a class of probabilistic derivative-free optimization algorithms where the function is solely used through comparisons of candidate solutions. Various algorithms are included in the class of CB-SARS algorithms. On the one hand, a few methods introduced already in the 60's: the step-size adaptive random search by Schumer and Steiglitz, the compound random search by Devroye and simplified versions of Matyas' random optimization algorithm or Kjellstrom and Taxen Gaussian adaptation. On the other hand, it includes simplified versions of several recent algorithms: the covariance-matrix-adaptation evolution strategy algorithm (CMA-ES), the exponential natural evolution strategy (xNES), or the cross entropy method. CB-SARS algorithms typically exhibit several invariances. First of all, invariance to composing the objective function with a strictly monotonic transformation which is a direct consequence of the fact that the algorithms only use comparisons. Second, scale invariance that translates the fact that the algorithm has no intrinsic absolute notion of scale. The algorithms are investigated on scaling-invariant functions defined as functions that preserve the ordering of two points (with respect to their objective function values) when they are both scaled with the same positive parameter (this scaling is done w.r.t. a single constant reference point). This class of functions includes composite of norms by strictly increasing functions as well as some non quasi-convex functions and non-continuous functions. We prove that the algorithm invariance properties entail on scaling-invariant functions the existence of a homogeneous Markov chain whose stability implies linear convergence of the original algorithm. Hence we turn the problem of studying linear convergence of CB-SARS optimization algorithms into a study of the stability of a joint Markov chain. We naturally derive sufficient conditions expressed in terms of different stability conditions for the Markov chain (irreducibility, positivity, Harris recurrence, geometric ergodicity) for the global linear convergence of CB-SARS. The methodology presented here is applied in a companion paper where stability sufficient conditions are proven for the (1+1)-ES with a generalized one-fifth success rule that coincides with Schumer and Steiglitz' or Devroye's algorithms. This leads to a first proof of linear convergence for the algorithm considered and first proof of linear convergence for a scale-invariant CB-SARS for such a wide family of functions including in particular non quasi-convex and non continuous functions.

[1]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[2]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[3]  K. Steiglitz,et al.  Adaptive step size random search , 1968 .

[4]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[5]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[6]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[7]  Lars Taxén,et al.  Stochastic optimization in system design , 1981 .

[8]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[9]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[10]  Ingo Rechenberg,et al.  Evolutionsstrategie '94 , 1994, Werkstatt Bionik und Evolutionstechnik.

[11]  Nikolaus Hansen,et al.  On the Adaptation of Arbitrary Normal Mutation Distributions in Evolution Strategies: The Generating Set Adaptation , 1995, ICGA.

[12]  R. Rubinstein The Cross-Entropy Method for Combinatorial and Continuous Optimization , 1999 .

[13]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[14]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[15]  Olivier François,et al.  Global convergence for evolution strategies in spherical problems: some simple proofs and difficulties , 2003, Theor. Comput. Sci..

[16]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[17]  Petros Koumoutsakos,et al.  Learning Probability Distributions in Continuous Evolutionary Algorithms - a Comparative Review , 2004, Nat. Comput..

[18]  Anne Auger,et al.  Convergence results for the (1, lambda)-SA-ES using the theory of phi-irreducible Markov chains , 2005, Theor. Comput. Sci..

[19]  Jens Jägersküpper,et al.  Rigorous Runtime Analysis of the (1+1) ES: 1/5-Rule and Ellipsoidal Fitness Landscapes , 2005, FOGA.

[20]  A. Auger Convergence results for the ( 1 , )-SA-ES using the theory of-irreducible Markov chains , 2005 .

[21]  Jens Jägersküpper,et al.  Probabilistic runtime analysis of (1 +, λ),ES using isotropic mutations , 2006, GECCO '06.

[22]  Jens Jägersküpper,et al.  How the (1+1) ES using isotropic mutations minimizes positive definite quadratic forms , 2006, Theor. Comput. Sci..

[23]  M. Powell The NEWUOA software for unconstrained optimization without derivatives , 2006 .

[24]  Dirk V. Arnold,et al.  Weighted multirecombination evolution strategies , 2006, Theor. Comput. Sci..

[25]  Jens Jägersküpper,et al.  Algorithmic analysis of a basic evolutionary algorithm for continuous optimization , 2007, Theor. Comput. Sci..

[26]  Jens Jägersküpper Lower Bounds for Hit-and-Run Direct Search , 2007, SAGA.

[27]  A. Zhigljavsky Stochastic Global Optimization , 2008, International Encyclopedia of Statistical Science.

[28]  Katya Scheinberg,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[29]  Isao Ono,et al.  Bidirectional Relation between CMA Evolution Strategies and Natural Evolution Strategies , 2010, PPSN.

[30]  Tom Schaul,et al.  Exponential natural evolution strategies , 2010, GECCO '10.

[31]  Anne Auger,et al.  Mirrored sampling in evolution strategies with weighted recombination , 2011, GECCO '11.

[32]  Anne Auger,et al.  Analyzing the impact of mirrored sampling and sequential selection in elitist evolution strategies , 2011, FOGA '11.

[33]  Stephen R. Marsland,et al.  Convergence Properties of (μ + λ) Evolutionary Algorithms , 2011, AAAI.

[34]  Anne Auger,et al.  Cumulative Step-Size Adaptation on Linear Functions , 2012, PPSN.

[35]  Anne Auger,et al.  Linear Convergence on Positively Homogeneous Functions of a Comparison Based Step-Size Adaptive Randomized Search: the (1+1) ES with Generalized One-fifth Success Rule , 2013, ArXiv.

[36]  Anne Auger,et al.  Principled Design of Continuous Stochastic Search: From Theory to Practice , 2014, Theory and Principled Methods for the Design of Metaheuristics.