Combinatorics of Tandem Duplication Random Loss Mutations on Circular Genomes

The tandem duplication random loss operation (TDRL) is an important genome rearrangement operation in metazoan mitochondrial genomes. A TDRL consists of a duplication of a contiguous set of genes in tandem followed by a random loss of one copy of each duplicated gene. This paper presents an analysis of the combinatorics of TDRLs on circular genomes, e.g., the mitochondrial genome. In particular, results on TDRLs for circular genomes and their linear representatives are established. Moreover, the distance between gene orders with respect to linear TDRLs and circular TDRLs is studied. An analysis of the available animal mitochondrial gene orders shows the practical relevance of the theoretical results.

[1]  Pascal Préa,et al.  A complete logical approach to resolve the evolution and dynamics of mitochondrial genome in bilaterians , 2017, bioRxiv.

[2]  T. Papenfuss,et al.  Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. , 1997, Molecular biology and evolution.

[3]  John B. Fraleigh A first course in abstract algebra , 1967 .

[4]  Pavel A. Pevzner,et al.  Transforming men into mice (polynomial algorithm for genomic distance problem) , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[5]  P. Stadler,et al.  Genetic aspects of mitochondrial genome evolution. , 2013, Molecular phylogenetics and evolution.

[6]  Matthias Bernt,et al.  EqualTDRL: illustrating equivalent tandem duplication random loss rearrangements , 2018, BMC Bioinformatics.

[7]  P. Stadler,et al.  MITOS: improved de novo metazoan mitochondrial genome annotation. , 2013, Molecular phylogenetics and evolution.

[8]  P. Diaconis,et al.  SHUFFLING CARDS AND STOPPING-TIMES , 1986 .

[9]  David Sankoff,et al.  Genome rearrangement with gene families , 1999, Bioinform..

[10]  A. Beckenbach Mitochondrial Genome Sequences of Nematocera (Lower Diptera): Evidence of Rearrangement following a Complete Genome Duplication in a Winter Crane Fly , 2011, Genome biology and evolution.

[11]  G. Blin,et al.  The breakpoint distance for signed sequences , 2005 .

[12]  Matthias Bernt,et al.  A method for computing an inventory of metazoan mitochondrial gene order rearrangements , 2011, BMC Bioinformatics.

[13]  João Carneiro,et al.  Mitochondrial DNA Rearrangements in Health and Disease—A Comprehensive Study , 2014, Human mutation.

[14]  Satish Rao,et al.  On the tandem duplication-random loss model of genome rearrangement , 2006, SODA '06.

[15]  J. Boore,et al.  Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. , 2002, Molecular biology and evolution.

[16]  David Sankoff,et al.  Edit Distances for Genome Comparisons Based on Non-Local Operations , 1992, CPM.

[17]  Vineet Bafna,et al.  Sorting by Transpositions , 1998, SIAM J. Discret. Math..

[18]  R. Zardoya,et al.  A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. , 2005, Molecular biology and evolution.

[19]  David Sankoff,et al.  Power Boosts for Cluster Tests , 2005, Comparative Genomics.

[20]  Mathilde Bouvel,et al.  A variant of the tandem duplication - random loss model of genome rearrangement , 2008, Theor. Comput. Sci..

[21]  J. Inoue,et al.  Evolution of the deep-sea gulper eel mitochondrial genomes: large-scale gene rearrangements originated within the eels. , 2003, Molecular biology and evolution.

[22]  P. Stadler,et al.  Computational methods for the analysis of mitochondrial genome rearrangements , 2014 .

[23]  J. Boore,et al.  Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders. , 2005, Molecular biology and evolution.

[24]  Nadia El-Mabrouk,et al.  Maximizing Synteny Blocks to Identify Ancestral Homologs , 2005, Comparative Genomics.

[25]  P. Stadler,et al.  Inferring phylogenetic trees from the knowledge of rare evolutionary events , 2017, Journal of Mathematical Biology.

[26]  Matthias Bernt,et al.  Finding all sorting tandem duplication random loss operations , 2009, J. Discrete Algorithms.

[27]  Mathilde Bouvel,et al.  Posets and permutations in the duplication-loss model: Minimal permutations with d descents , 2008, Theor. Comput. Sci..

[28]  T. Dowling,et al.  Evolutionary dynamics of tandem repeats in the mitochondrial DNA control region of the minnow Cyprinella spiloptera. , 1997, Molecular biology and evolution.

[29]  T. Patarnello,et al.  The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura , 2017, Scientific Reports.

[30]  Guillaume Fertin,et al.  Combinatorics of Genome Rearrangements , 2009, Computational molecular biology.

[31]  A. Arndt,et al.  Mitochondrial gene rearrangement in the sea cucumber genus Cucumaria. , 1998, Molecular biology and evolution.

[32]  João Meidanis,et al.  SCJ: A Breakpoint-Like Distance that Simplifies Several Rearrangement Problems , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[33]  Jeffrey L. Boore,et al.  Gene translocation links insects and crustaceans , 1998, Nature.

[34]  Jean-Luc Baril,et al.  Whole mirror duplication-random loss model and pattern avoiding permutations , 2010, Inf. Process. Lett..

[35]  Matthias Bernt,et al.  Partially local three-way alignments and the sequence signatures of mitochondrial genome rearrangements , 2017, Algorithms for Molecular Biology.

[36]  Tatiana Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[37]  J. Boore The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deu , 2000 .

[38]  Romeo Rizzi,et al.  Conserved Interval Distance Computation Between Non-trivial Genomes , 2005, COCOON.

[39]  Miklós Bóna,et al.  Combinatorics of permutations , 2022, SIGA.

[40]  Pavel A. Pevzner,et al.  Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals , 1995, JACM.

[41]  Mattia D'Antonio,et al.  MitoZoa 2.0: a database resource and search tools for comparative and evolutionary analyses of mitochondrial genomes in Metazoa , 2011, Nucleic Acids Res..

[42]  Jens Stoye,et al.  A Unifying View of Genome Rearrangements , 2006, WABI.