Computational approaches to motor control

[1]  Emanuel Todorov,et al.  Cosine Tuning Minimizes Motor Errors , 2002, Neural Computation.

[2]  D. Hoffman,et al.  Direction of action is represented in the ventral premotor cortex , 2001, Nature Neuroscience.

[3]  S. Scott,et al.  Dissociation between hand motion and population vectors from neural activity in motor cortex , 2022 .

[4]  T. Sejnowski,et al.  Simulating a lesion in a basis function model of spatial representations: comparison with hemineglect. , 2001, Psychological review.

[5]  A. G. Feldman,et al.  The timing of control signals underlying fast point-to-point arm movements , 2001, Experimental Brain Research.

[6]  R. Poppele,et al.  Proprioception from a spinocerebellar perspective. , 2001, Physiological reviews.

[7]  Jean-Jacques E. Slotine,et al.  Modularity, evolution, and the binding problem: a view from stability theory , 2001, Neural Networks.

[8]  R. Andersen,et al.  The parietal reach region codes the next planned movement in a sequential reach task. , 2001, Journal of neurophysiology.

[9]  C. D. Mah Spatial and temporal modulation of joint stiffness during multijoint movement , 2001, Experimental Brain Research.

[10]  E Bizzi,et al.  Motor learning through the combination of primitives. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  L. Snyder Coordinate transformations for eye and arm movements in the brain , 2000, Current Opinion in Neurobiology.

[12]  Philip N. Sabes,et al.  The planning and control of reaching movements , 2000, Current Opinion in Neurobiology.

[13]  David J. Ostry,et al.  Compensation for loads during arm movements using equilibrium-point control , 2000, Experimental Brain Research.

[14]  Jacques Droulez,et al.  Analysis of Pointing Errors Reveals Properties of Data Representations and Coordinate Transformations Within the Central Nervous System , 2000, Neural Computation.

[15]  J. V. Van Gisbergen,et al.  Kinematic strategies for upper arm-forearm coordination in three dimensions. , 2000, Journal of neurophysiology.

[16]  Alexandre Pouget,et al.  Computational approaches to sensorimotor transformations , 2000, Nature Neuroscience.

[17]  E. Bizzi,et al.  New perspectives on spinal motor systems , 2000, Nature Reviews Neuroscience.

[18]  R. Zemel,et al.  Information processing with population codes , 2000, Nature Reviews Neuroscience.

[19]  Zoubin Ghahramani,et al.  Computational principles of movement neuroscience , 2000, Nature Neuroscience.

[20]  Michael A. Arbib,et al.  Synthetic brain imaging: grasping, mirror neurons and imitation , 2000, Neural Networks.

[21]  Reza Shadmehr,et al.  Learning of action through adaptive combination of motor primitives , 2000, Nature.

[22]  Stephen H. Scott,et al.  Reply to 'One motor cortex, two different views' , 2000, Nature Neuroscience.

[23]  C. Prablanc,et al.  Postural invariance in three-dimensional reaching and grasping movements , 2000, Experimental Brain Research.

[24]  R. Andersen,et al.  Reaches to Sounds Encoded in an Eye-Centered Reference Frame , 2000, Neuron.

[25]  Maja J. Mataric,et al.  Getting Humanoids to Move and Imitate , 2000, IEEE Intell. Syst..

[26]  R. Andersen,et al.  Intention-related activity in the posterior parietal cortex: a review , 2000, Vision Research.

[27]  Alexander A. Frolov,et al.  On the possibility of linear modelling the human arm neuromuscular apparatus , 2000, Biological Cybernetics.

[28]  E. Todorov Direct cortical control of muscle activation in voluntary arm movements: a model , 2000, Nature Neuroscience.

[29]  S. Scott Population vectors and motor cortex: neural coding or epiphenomenon? , 2000, Nature Neuroscience.

[30]  D. Tweed,et al.  Task-Dependent Constraints in Motor Control: Pinhole Goggles Make the Head Move Like an Eye , 2000, The Journal of Neuroscience.

[31]  Michael A. Arbib,et al.  Cerebellar learning of accurate predictive control for fast-reaching movements , 2000, Biological Cybernetics.

[32]  Antony J. Hodgson,et al.  A model-independent definition of attractor behavior applicable to interactive tasks , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[33]  Bagrat Amirikian,et al.  Directional tuning profiles of motor cortical cells , 2000, Neuroscience Research.

[34]  K. E. Novak,et al.  Kinematic properties of rapid hand movements in a knob turning task , 2000, Experimental Brain Research.

[35]  A. Schwartz,et al.  One motor cortex, two different views , 2000, Nature Neuroscience.

[36]  S. Schaal,et al.  Origins and violations of the 2/3 power law in rhythmic three-dimensional arm movements , 2000, Experimental Brain Research.

[37]  J. Mazziotta,et al.  Cortical mechanisms of human imitation. , 1999, Science.

[38]  Mitsuo Kawato,et al.  Internal models for motor control and trajectory planning , 1999, Current Opinion in Neurobiology.

[39]  Sybert H. Stroeve,et al.  Impedance characteristics of a neuromusculoskeletal model of the human arm I. Posture control , 1999, Biological Cybernetics.

[40]  F. Lacquaniti,et al.  Viewer-centered and body-centered frames of reference in direct visuomotor transformations , 1999, Experimental Brain Research.

[41]  John W. Krakauer,et al.  Independent learning of internal models for kinematic and dynamic control of reaching , 1999, Nature Neuroscience.

[42]  J R Flanagan,et al.  Composition and Decomposition of Internal Models in Motor Learning under Altered Kinematic and Dynamic Environments , 1999, The Journal of Neuroscience.

[43]  K. Doya,et al.  Parallel neural networks for learning sequential procedures , 1999, Trends in Neurosciences.

[44]  Kenji Doya,et al.  What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? , 1999, Neural Networks.

[45]  D. Hoffman,et al.  Muscle and movement representations in the primary motor cortex. , 1999, Science.

[46]  A. A. Handzel,et al.  Geometric Methods in the Study of Human Motor Control , 1999 .

[47]  A P Batista,et al.  Reach plans in eye-centered coordinates. , 1999, Science.

[48]  E. Brenner,et al.  A new view on grasping. , 1999, Motor control.

[49]  Stefan Schaal,et al.  Is imitation learning the route to humanoid robots? , 1999, Trends in Cognitive Sciences.

[50]  Gregor Schöner,et al.  The uncontrolled manifold concept: identifying control variables for a functional task , 1999, Experimental Brain Research.

[51]  Y Uno,et al.  Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. , 1999, Journal of neurophysiology.

[52]  Robert M. Sanner,et al.  A mathematical model of the adaptive control of human arm motions , 1999, Biological Cybernetics.

[53]  T J Sejnowski,et al.  A Theory of Geometric Constraints on Neural Activity for Natural Three-Dimensional Movement , 1999, The Journal of Neuroscience.

[54]  N. Hogan,et al.  Quantization of continuous arm movements in humans with brain injury. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[55]  D. Wolpert,et al.  Evidence for an eye-centered spherical representation of the visuomotor map. , 1999, Journal of neurophysiology.

[56]  Sybert H. Stroeve,et al.  Impedance characteristics of a neuromusculoskeletal model of the human arm II. Movement control , 1999, Biological Cybernetics.

[57]  A. Schwartz,et al.  Motor cortical activity during drawing movements: population representation during lemniscate tracing. , 1999, Journal of neurophysiology.

[58]  S. Schaal,et al.  Segmentation of endpoint trajectories does not imply segmented control , 1999, Experimental Brain Research.

[59]  R. Beer,et al.  Biorobotic approaches to the study of motor systems , 1998, Current Opinion in Neurobiology.

[60]  C. Harris On the optimal control of behaviour: a stochastic perspective , 1998, Journal of Neuroscience Methods.

[61]  Daniel M. Wolpert,et al.  Signal-dependent noise determines motor planning , 1998, Nature.

[62]  D J Ostry,et al.  Are complex control signals required for human arm movement? , 1998, Journal of neurophysiology.

[63]  E. J. Vrijenhoek,et al.  Arm position constraints during pointing and reaching in 3-D space. , 1997, Journal of neurophysiology.

[64]  Pietro G. Morasso,et al.  Self-Organization, Computational Maps, and Motor Control , 1997 .

[65]  G. Sapiro,et al.  Constant Affine Velocity Predicts the 1 3 Power Law of Planar Motion Perception and Generation , 1997, Vision Research.

[66]  Mitsuo Kawato,et al.  Equilibrium-Point Control Hypothesis Examined by Measured Arm Stiffness During Multijoint Movement , 1996, Science.

[67]  Eve Marder,et al.  Theory in motion , 1995, Current Opinion in Neurobiology.

[68]  J. F. Soechting,et al.  Moving effortlessly in three dimensions: does Donders' law apply to arm movement? , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  T. Flash,et al.  Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. , 1995, Journal of experimental psychology. Human perception and performance.

[70]  F A Mussa-Ivaldi,et al.  Adaptive representation of dynamics during learning of a motor task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  N. Hogan,et al.  Does the nervous system use equilibrium-point control to guide single and multiple joint movements? , 1992, The Behavioral and brain sciences.

[72]  Michael I. Jordan,et al.  Forward Models: Supervised Learning with a Distal Teacher , 1992, Cogn. Sci..

[73]  F. Lacquaniti Central representations of human limb movement as revealed by studies of drawing and handwriting , 1989, Trends in Neurosciences.

[74]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[75]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  P. Viviani,et al.  The law relating the kinematic and figural aspects of drawing movements. , 1983, Acta psychologica.

[77]  J. Hollerbach Computers, brains and the control of movement , 1982, Trends in Neurosciences.

[78]  W. Wheeler,et al.  Dissociation between hand motion and population vectors from neural activity in motor cortex , 2022 .