Approximation tensorielle sous contrainte d'existence. Application au traitement d'antennes

On s’interesse au probleme de localisation et d’estimation de sources dans des conditions difficiles, a savoir lorsque les sources sont correlees et proches dans l’espace, et les echantillons courts. L'algorithme propose est base sur une approximation tensorielle de rang faible sous des contraintes originales garantissant son existence. Il necessite une antenne formee de plusieurs sous-antennes identiques se deduisant les unes des autres par translation. Les bornes de performances sont calculees en presence de bruit additif gaussien complexe non circulaire.

[1]  Pierre Comon,et al.  Tensors : A brief introduction , 2014, IEEE Signal Processing Magazine.

[2]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[3]  Marius Pesavento,et al.  Direction finding in partly calibrated sensor arrays composed of multiple subarrays , 2002, IEEE Trans. Signal Process..

[4]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[5]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems , 1999 .

[6]  Are Hjørungnes,et al.  Complex-Valued Matrix Differentiation: Techniques and Key Results , 2007, IEEE Transactions on Signal Processing.

[7]  Jian Li,et al.  SPICE: A Sparse Covariance-Based Estimation Method for Array Processing , 2011, IEEE Transactions on Signal Processing.

[8]  G. Golub,et al.  Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.

[9]  Nikos D. Sidiropoulos,et al.  Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays , 2001, IEEE Trans. Signal Process..

[10]  G. Bienvenu,et al.  Optimality of high resolution array processing using the eigensystem approach , 1983 .

[11]  Charles Soussen,et al.  Sparse multidimensional modal analysis using a multigrid dictionary refinement , 2012, EURASIP J. Adv. Signal Process..

[12]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[13]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[14]  A. Geramita,et al.  Higher secant varieties of the Segre varieties , 2005 .

[15]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Björn E. Ottersten,et al.  Multiple invariance ESPRIT , 1992, IEEE Trans. Signal Process..

[17]  P. Comon,et al.  Tensor decompositions, alternating least squares and other tales , 2009 .

[18]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[19]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[20]  Rasmus Bro,et al.  A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..

[21]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[22]  H. Kiers Towards a standardized notation and terminology in multiway analysis , 2000 .

[23]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[24]  Pierre Comon,et al.  Blind Multilinear Identification , 2012, IEEE Transactions on Information Theory.

[25]  Bjorn Ottersten,et al.  Performance analysis of the total least squares ESPRIT algorithm , 1991, IEEE Trans. Signal Process..

[26]  Chris Peterson,et al.  Induction for secant varieties of Segre varieties , 2006, math/0607191.

[27]  Zbynek Koldovský,et al.  Cramér-Rao-Induced Bounds for CANDECOMP/PARAFAC Tensor Decomposition , 2012, IEEE Transactions on Signal Processing.