Automatic Calibration of Multiple Cameras and Depth Sensors with a Spherical Target

In this work we present a novel approach for multi-sensor calibration that significantly outperforms current state-of-the-art. We introduce a new spherical calibration target which has major benefits over existing targets. Those are subresolution detection accuracy in both camera and depth sensor, view invariance and applicability to a wider range of sensor setups than current approaches. With our method a single person achieves high quality calibration in less than a minute. No preparations for setting up the environment for calibration is needed. Our method is fast, easy to use and fully automatic. We evaluate our method in simulation and show high accuracy with an error of less than 3mm in translation and 0.1 0 in rotation on real data.

[1]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Silvio Savarese,et al.  Automatic Targetless Extrinsic Calibration of a 3D Lidar and Camera by Maximizing Mutual Information , 2012, AAAI.

[3]  Sebastian Thrun,et al.  Automatic Online Calibration of Cameras and Lasers , 2013, Robotics: Science and Systems.

[4]  Adam Herout,et al.  Calibration of RGB camera with velodyne LiDAR , 2014 .

[5]  Nick Schneider,et al.  RegNet: Multimodal sensor registration using deep neural networks , 2017, 2017 IEEE Intelligent Vehicles Symposium (IV).

[6]  Juan I. Nieto,et al.  Automatic Calibration of Lidar and Camera Images using Normalized Mutual Information , 2012 .

[7]  Martin Lauer,et al.  Photometric laser scanner to camera calibration for low resolution sensors , 2016, 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC).

[8]  Derek D. Lichti,et al.  Temporal Stability of the Velodyne HDL-64E S2 Scanner for High Accuracy Scanning Applications , 2011, Remote. Sens..

[9]  Andreas Geiger,et al.  Automatic camera and range sensor calibration using a single shot , 2012, 2012 IEEE International Conference on Robotics and Automation.

[10]  Robert Pless,et al.  Extrinsic calibration of a camera and laser range finder (improves camera calibration) , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[11]  Thierry Peynot,et al.  Reliable automatic camera-laser calibration , 2010, ICRA 2010.

[12]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[13]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Tobias Strauss Kalibrierung von Multi-Kamera-Systemen - Kombinierte Schätzung von intrinsischem Abbildungsverhalten der einzelnen Kameras und deren relativer Lage zueinander ohne Erfordernis sich überlappender Sichtbereiche , 2015 .

[15]  Kyungeun Cho,et al.  Calibration between Color Camera and 3D LIDAR Instruments with a Polygonal Planar Board , 2014, Sensors.

[16]  Vincent Frémont,et al.  Extrinsic calibration between a multi-layer lidar and a camera , 2008, 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[17]  Naser El-Sheimy,et al.  A NEW AUTOMATIC SYSTEM CALIBRATION OF MULTI-CAMERAS AND LIDAR SENSORS , 2016 .

[18]  Nick Schneider,et al.  Visual odometry driven online calibration for monocular LiDAR-camera systems , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[19]  Ulugbek Kamilov,et al.  Autocalibration of lidar and optical cameras via edge alignment , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[20]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.