Evolutionary Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a popular class of algorithms to sample from a complex distribution. A key issue in the design of MCMC algorithms is to improve the proposal mechanism and the mixing behaviour. This has led some authors to propose the use of a population of MCMC chains, while others go even further by integrating techniques from evolutionary computation (EC) into the MCMC framework. This merging of MCMC and EC leads to a class of algorithms, we call Evolutionary Markov Chain Monte Carlo (EMCMC). In this paper we first survey existing EMCMC algorithms and categorise them in two classes: family-competitive EMCMC and population-driven EMCMC. Next, we introduce the Elitist Coupled Acceptance rule and the Fitness Ordered Tempering algorithm.

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[3]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[4]  W. Wong,et al.  Evolutionary Monte Carlo for protein folding simulations , 2001 .

[5]  A. Cercueil,et al.  Monte Carlo simulation and population-based optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[6]  David E. Goldberg,et al.  A Note on Boltzmann Tournament Selection for Genetic Algorithms and Population-Oriented Simulated Annealing , 1990, Complex Syst..

[7]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[8]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[9]  Christopher H. Holloman,et al.  Multi-resolution Genetic Algorithms and Markov Chain Monte Carlo , 2002 .

[10]  Joseph Culberson,et al.  Genetic Invariance: A New Paradigm for Genetic Algorithm Design , 1992 .

[11]  Kathryn B. Laskey,et al.  Population Markov Chain Monte Carlo , 2004, Machine Learning.

[12]  Jun S. Liu,et al.  Simulated Sintering : Markov Chain Monte Carlo With Spaces of Varying Dimensions , 1998 .

[13]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[14]  Kalyanmoy Deb,et al.  Massive Multimodality, Deception, and Genetic Algorithms , 1992, PPSN.

[15]  Pedro Larrañaga,et al.  Genetic Algorithms: Bridging the Convergence Gap , 1999, Theor. Comput. Sci..

[16]  Olivier François,et al.  Niching in Monte Carlo Filtering Algorithms , 2001, Artificial Evolution.


[18]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[19]  Dirk Thierens,et al.  Elitist recombination: an integrated selection recombination GA , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[20]  Raphaël Cerf,et al.  A NEW GENETIC ALGORITHM , 1996 .

[21]  Günter Rudolph,et al.  Massively Parallel Simulated Annealing and Its Relation to Evolutionary Algorithms , 1993, Evolutionary Computation.

[22]  Byoung-Tak Zhang,et al.  System identification using evolutionary Markov chain Monte Carlo , 2001, J. Syst. Archit..

[23]  David E. Goldberg,et al.  Parallel Recombinative Simulated Annealing: A Genetic Algorithm , 1995, Parallel Comput..

[24]  Malcolm J. A. Strens,et al.  Evolutionary MCMC Sampling and Optimization in Discrete Spaces , 2003, ICML.

[25]  Fernando G. Lobo,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[26]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.