Local Perturbation Analysis of Linear Programming with Functional Relation Among Parameters

In this paper, the authors study the sensitivity analysis for a class of linear programming (LP) problems with a functional relation among the objective function parameters or those of the right-hand side (RHS). The classical methods and standard sensitivity analysis software packages fail to function when a functional relation among the LP parameters prevail. In order to overcome this deficiency, the authors derive a series of sensitivity analysis formulae and devise corresponding algorithms for different groups of homogenous LP parameters. The validity of the derived formulae and devised algorithms is corroborated by open literature examples having linear as well as nonlinear functional relations between their vector b or vector c components.

[1]  Jean-Philippe Vial,et al.  Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.

[2]  Thomas L. Magnanti,et al.  Applied Mathematical Programming , 1977 .

[3]  B. Jansen,et al.  Sensitivity analysis in linear programming: just be careful! , 1997 .

[4]  T. Terlaky,et al.  Sensitivity Analysis In Linear And Convex Quadratic Optimization: Invariant Active Constraint Set And Invariant Set Intervals* , 2006 .

[5]  Seyed Hassan Ghodsypour,et al.  A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming , 1998 .

[6]  John M. Wilson,et al.  Advances in Sensitivity Analysis and Parametric Programming , 1998, J. Oper. Res. Soc..

[7]  Anthony V. Fiacco,et al.  Introduction to Sensitivity and Stability Analysis in Nonlinear Programming , 2012 .

[8]  Tamás Koltai,et al.  The difference between the managerial and mathematical interpretation of sensitivity analysis results in linear programming , 2000 .

[9]  Harvey J. Greenberg,et al.  Simultaneous Primal-Dual Right-Hand-Side Sensitivity Analysis from a Strictly Complementary Solution of a Linear Program , 1999, SIAM J. Optim..

[10]  H. Arsham,et al.  A Simplex-Type Algorithm for General Transportation Problems: An Alternative to Stepping-Stone , 1989 .

[11]  Vidar Hepsø,et al.  Integrated Operations in the Oil and Gas Industry: Sustainability and Capability Development , 2013 .

[12]  C. D. Heredero,et al.  Open Innovation in Firms and Public Administrations: Technologies for Value Creation , 2011 .

[13]  Alireza Ghaffari Hadigheh,et al.  Bi-parametric optimal partition invariancy sensitivity analysis in linear optimization , 2008, Central Eur. J. Oper. Res..

[14]  William P. Fox,et al.  Modeling and Methodology for Incorporating Existing Technologies to Produce Higher Probabilities of Detecting Suicide Bombers , 2013, Int. J. Oper. Res. Inf. Syst..

[15]  Raul Valverde,et al.  Information Systems Reengineering for Modern Business Systems: ERP, Supply Chain and E-Commerce Management Solutions , 2012 .

[16]  Alireza Ghaffari Hadigheh,et al.  Sensitivity analysis in linear optimization: Invariant support set intervals , 2006, Eur. J. Oper. Res..

[17]  Renato D. C. Monteiro,et al.  A geometric view of parametric linear programming , 1992, Algorithmica.

[18]  Martin Eike,et al.  Implementing iE: Learnings from a Drilling Contractor , 2013 .

[19]  H. Arsham,et al.  Postoptimality Analyses of the Transportation Problem , 1992 .

[20]  T. Terlaky,et al.  Active Constraint Set Invariancy Sensitivity Analysis in Linear Optimization , 2007 .

[21]  Raul Valverde,et al.  Component-Based Modeling for Information Systems Reengineering , 2012 .

[22]  Alireza Ghaffari Hadigheh,et al.  Support set expansion sensitivity analysis in convex quadratic optimization , 2007, Optim. Methods Softw..

[23]  Carlo Filippi,et al.  A fresh view on the tolerance approach to sensitivity analysis in linear programming , 2005, Eur. J. Oper. Res..

[24]  Alireza Ghaffari Hadigheh,et al.  Generalized support set invariancy sensitivity analysis in linear optimization , 2006 .