A modified version of a T‐Cell Algorithm for constrained optimization problems

SUMMARY In this paper, we present a heuristic inspired on the T-Cell model of the immune system (i.e. an artificial immune system). The proposed approach (called T-Cell) is used for solving constrained (numerical) optimization problems, and is validated using several test functions taken from the specialized literature on evolutionary optimization. Additionally, several engineering optimization problems are also used for assessing the performance of the proposed approach. The results are compared with respect to approaches representative of the state-of-the-art in constrained evolutionary optimization. Copyright q 2010 John Wiley & Sons, Ltd.

[1]  Prabhat Hajela,et al.  Immune network modelling in design optimization , 1999 .

[2]  Stephanie Forrest,et al.  Architecture for an Artificial Immune System , 2000, Evolutionary Computation.

[3]  Avinash Bhandoola,et al.  Trafficking from the bone marrow to the thymus: a prerequisite for thymopoiesis , 2006, Immunological reviews.

[4]  Helio J. C. Barbosa,et al.  An Adaptive Penalty Scheme In Genetic Algorithms For Constrained Optimiazation Problems , 2002, GECCO.

[5]  Melvin Cohn,et al.  A Theory of Self-Nonself Discrimination , 1970, Science.

[6]  Kamran Behdinan,et al.  Particle Swarm Optimization in Structural Design , 2007 .

[7]  Heder S. Bernardino,et al.  A new hybrid AIS-GA for constrained optimization problems in mechanical engineering , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[8]  Carlos A. Coello Coello,et al.  Solving Constrained Optimization using a T-Cell Artificial Immune System , 2008, Inteligencia Artif..

[9]  Jonathan Timmis,et al.  Artificial Immune Systems: A New Computational Intelligence Approach , 2003 .

[10]  Heder S. Bernardino,et al.  A hybrid genetic algorithm for constrained optimization problems in mechanical engineering , 2007, 2007 IEEE Congress on Evolutionary Computation.

[11]  Guan-Chun Luh,et al.  Multi-objective optimal design of truss structure with immune algorithm , 2004 .

[12]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[13]  J Timmis,et al.  An artificial immune system for data analysis. , 2000, Bio Systems.

[14]  N. K. Jerne,et al.  The immune system. , 1973, Scientific American.

[15]  Jerzy Balicki Multi-criterion Evolutionary Algorithm with Model of the Immune System to Handle Constraints for Task Assignments , 2004, ICAISC.

[16]  Jing J. Liang,et al.  Problem Deflnitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization , 2006 .

[17]  John E. Hunt,et al.  An adaptive, distributed learning system based on the immune system , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[18]  Simon M. Garrett,et al.  Improved Pattern Recognition with Artificial Clonal Selection? , 2003, ICARIS.

[19]  Yoshiteru Ishida An immune network model and its applications to process diagnosis , 1993, Systems and Computers in Japan.

[20]  Leandro Nunes de Castro,et al.  aiNet: An Artificial Immune Network for Data Analysis , 2002 .

[21]  Dipankar Dasgupta,et al.  Immunological Computation: Theory and Applications , 2008 .

[22]  Carlos A. Coello Coello,et al.  Hybridizing a genetic algorithm with an artificial immune system for global optimization , 2004 .

[23]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[24]  Carlos A. Coello Coello,et al.  Optimizing constrained problems through a T-Cell artificial immune system , 2008 .

[25]  Yoshiki Uchikawa,et al.  Fault diagnosis of plant systems using immune networks , 1994, Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems.

[26]  P. Matzinger Tolerance, danger, and the extended family. , 1994, Annual review of immunology.

[27]  Alan S. Perelson,et al.  Self-nonself discrimination in a computer , 1994, Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy.

[28]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[29]  Helio J. C. Barbosa,et al.  An adaptive penalty scheme for genetic algorithms in structural optimization , 2004 .

[30]  Carlos A. Coello Coello,et al.  Handling Constraints in Global Optimization Using an Artificial Immune System , 2005, ICARIS.

[31]  A. Belegundu,et al.  Trust region methods for structural optimization using exact second order sensitivity , 1991 .

[32]  Carlos A. Coello Coello,et al.  A Novel Model of Artificial Immune System for Solving Constrained Optimization Problems with Dynamic Tolerance Factor , 2007, MICAI.

[33]  Ashok Dhondu Belegundu,et al.  A Study of Mathematical Programming Methods for Structural Optimization , 1985 .

[34]  Carlos A. Coello Coello,et al.  A bi-population PSO with a shake-mechanism for solving constrained numerical optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[35]  Guan-Chun Luh,et al.  MOIA: Multi-objective immune algorithm , 2003 .

[36]  Fabio A. González,et al.  Anomaly Detection Using Real-Valued Negative Selection , 2003, Genetic Programming and Evolvable Machines.

[37]  Simon M. Garrett,et al.  How Do We Evaluate Artificial Immune Systems? , 2005, Evolutionary Computation.

[38]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..