Unconstrained generation of synthetic antibody-antigen structures to guide machine learning methodology for antibody specificity prediction

[1]  G. K. Sandve,et al.  Access to ground truth at unconstrained size makes simulated data as indispensable as experimental data for bioinformatics methods development and benchmarking , 2022, Bioinform..

[2]  R. Akbar,et al.  Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies , 2022, mAbs.

[3]  I. Georgiev,et al.  Efficient discovery of SARS-CoV-2-neutralizing antibodies via B cell receptor sequencing and ligand blocking , 2022, Nature Biotechnology.

[4]  Ian T. Hoffecker,et al.  Stochastic modeling of antibody binding predicts programmable migration on antigen patterns , 2022, Nature Computational Science.

[5]  Philippe A. Robert,et al.  AntBO: Towards Real-World Automated Antibody Design with Combinatorial Bayesian Optimisation , 2022, SSRN Electronic Journal.

[6]  Sarah A. Robinson,et al.  Epitope profiling using computational structural modelling demonstrated on coronavirus-binding antibodies , 2021, PLoS Comput. Biol..

[7]  Brandon Yushan Feng,et al.  Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants , 2021, bioRxiv.

[8]  Cédric R. Weber,et al.  In silico proof of principle of machine learning-based antibody design at unconstrained scale , 2021, bioRxiv.

[9]  Yue Cao,et al.  A benchmark study of simulation methods for single-cell RNA sequencing data , 2021, Nature Communications.

[10]  Jeffrey J. Gray,et al.  Antibody structure prediction using interpretable deep learning , 2021, bioRxiv.

[11]  Cédric R. Weber,et al.  Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning , 2021, Nature Biomedical Engineering.

[12]  A. H. Laustsen,et al.  Animal Immunization, in Vitro Display Technologies, and Machine Learning for Antibody Discovery. , 2021, Trends in biotechnology.

[13]  Cédric R. Weber,et al.  A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding. , 2021, Cell reports.

[14]  A. Wallqvist,et al.  Using the antibody-antigen binding interface to train image-based deep neural networks for antibody-epitope classification , 2021, PLoS Comput. Biol..

[15]  C. Deane,et al.  DLAB: deep learning methods for structure-based virtual screening of antibodies , 2021, bioRxiv.

[16]  A. Butté,et al.  Machine Learning for Biologics: Opportunities for Protein Engineering, Developability, and Formulation , 2021, Trends in Pharmacological Sciences.

[17]  Wout Bittremieux,et al.  Current challenges for unseen-epitope TCR interaction prediction and a new perspective derived from image classification , 2020, Briefings Bioinform..

[18]  Philippe A. Robert,et al.  Ymir: A 3D structural affinity model for multi-epitope vaccine simulations , 2020, iScience.

[19]  Michael L. Waskom,et al.  Seaborn: Statistical Data Visualization , 2021, J. Open Source Softw..

[20]  Myle Ott,et al.  Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences , 2019, Proceedings of the National Academy of Sciences.

[21]  Lindsay G. Cowell,et al.  Mining adaptive immune receptor repertoires for biological and clinical information using machine learning , 2020 .

[22]  Charlotte M. Deane,et al.  CoV-AbDab: the Coronavirus Antibody Database , 2020, bioRxiv.

[23]  Alex Hawkins-Hooker,et al.  Generating functional protein variants with variational autoencoders , 2020, bioRxiv.

[24]  J. Mascola,et al.  Glycan repositioning of influenza hemagglutinin stem facilitates the elicitation of protective cross-group antibody responses , 2020, Nature Communications.

[25]  Hsin-Jung Li,et al.  Development of therapeutic antibodies for the treatment of diseases , 2020, Journal of Biomedical Science.

[26]  Sebastian Kelm,et al.  Computational approaches to therapeutic antibody design: established methods and emerging trends , 2019, Briefings Bioinform..

[27]  M. Bronstein,et al.  Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning , 2019, Nature Methods.

[28]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[29]  D. Burton,et al.  Mapping polyclonal antibody responses in non-human primates vaccinated with HIV Env trimer subunit vaccines , 2019, bioRxiv.

[30]  Alexandre M J J Bonvin,et al.  Modeling Antibody-Antigen Complexes by Information-Driven Docking. , 2019, Structure.

[31]  Ziheng Wang,et al.  Antibody complementarity determining region design using high-capacity machine learning , 2019, bioRxiv.

[32]  Diederik P. Kingma,et al.  An Introduction to Variational Autoencoders , 2019, Found. Trends Mach. Learn..

[33]  Chris Bailey-Kellogg,et al.  Learning Context-aware Structural Representations to Predict Antigen and Antibody Binding Interfaces , 2019, bioRxiv.

[34]  I. Springer,et al.  Prediction of Specific TCR-Peptide Binding From Large Dictionaries of TCR-Peptide Pairs , 2019, bioRxiv.

[35]  M. Nielsen,et al.  Antibody Specific B-Cell Epitope Predictions: Leveraging Information From Antibody-Antigen Protein Complexes , 2019, Front. Immunol..

[36]  S. Lacroix-Desmazes,et al.  Breaking the law: unconventional strategies for antibody diversification , 2019, Nature Reviews Immunology.

[37]  Thierry Mora,et al.  Physical epistatic landscape of antibody binding affinity , 2017, bioRxiv.

[38]  Björn Högberg,et al.  Binding to Nanopatterned Antigens is Dominated by the Spatial Tolerance of Antibodies , 2018, Nature Nanotechnology.

[39]  Jinbo Xu Distance-based protein folding powered by deep learning , 2018, Proceedings of the National Academy of Sciences.

[40]  Carlo Ferrari,et al.  Antibody interface prediction with 3D Zernike descriptors and SVM , 2018, Bioinform..

[41]  Petar Velickovic,et al.  Attentive cross-modal paratope prediction , 2018, J. Comput. Biol..

[42]  J. Rodrigues,et al.  pdb-tools: a swiss army knife for molecular structures , 2018, bioRxiv.

[43]  Yanay Ofran,et al.  Computational Design of Epitope-Specific Functional Antibodies. , 2018, Cell reports.

[44]  Pietro Liò,et al.  Parapred: antibody paratope prediction using convolutional and recurrent neural networks , 2018, Bioinform..

[45]  Yanay Ofran,et al.  Computational design of antibodies. , 2018, Current opinion in structural biology.

[46]  J. Yewdell,et al.  Understanding and Manipulating Viral Immunity: Antibody Immunodominance Enters Center Stage. , 2018, Trends in immunology.

[47]  Philippe A. Robert,et al.  Induction of broadly neutralizing antibodies in Germinal Centre simulations. , 2018, Current opinion in biotechnology.

[48]  Andrew C. R. Martin,et al.  AbDb: antibody structure database—a database of PDB-derived antibody structures , 2018, Database J. Biol. Databases Curation.

[49]  Mohammed AlQuraishi,et al.  End-to-end differentiable learning of protein structure , 2018, bioRxiv.

[50]  Omar Wagih,et al.  ggseqlogo: a versatile R package for drawing sequence logos , 2017, Bioinform..

[51]  D. Burton,et al.  Glycans Function as Anchors for Antibodies and Help Drive HIV Broadly Neutralizing Antibody Development. , 2017, Immunity.

[52]  C. Busse,et al.  Novel Approaches to Analyze Immunoglobulin Repertoires. , 2017, Trends in immunology.

[53]  Cédric R. Weber,et al.  Systems Analysis Reveals High Genetic and Antigen-Driven Predetermination of Antibody Repertoires throughout B Cell Development. , 2017, Cell reports.

[54]  William D. Lees,et al.  Investigating Substitutions in Antibody–Antigen Complexes Using Molecular Dynamics: A Case Study with Broad-spectrum, Influenza A Antibodies , 2017, Front. Immunol..

[55]  D. Burton What Are the Most Powerful Immunogen Design Vaccine Strategies? Reverse Vaccinology 2.0 Shows Great Promise. , 2017, Cold Spring Harbor perspectives in biology.

[56]  James Hetherington,et al.  abYsis: Integrated Antibody Sequence and Structure-Management, Analysis, and Prediction. , 2017, Journal of molecular biology.

[57]  Matthew Angel,et al.  Defining B Cell Immunodominance to Viruses , 2017, Nature Immunology.

[58]  Ian A Wilson,et al.  The HIV‐1 envelope glycoprotein structure: nailing down a moving target , 2017, Immunological reviews.

[59]  David Ryan Koes,et al.  Protein-Ligand Scoring with Convolutional Neural Networks , 2016, Journal of chemical information and modeling.

[60]  William S. DeWitt,et al.  A Public Database of Memory and Naive B-Cell Receptor Sequences , 2016, PloS one.

[61]  Jiye Shi,et al.  ABodyBuilder: Automated antibody structure prediction with data–driven accuracy estimation , 2016, mAbs.

[62]  Douglas E. V. Pires,et al.  mCSM-AB: a web server for predicting antibody–antigen affinity changes upon mutation with graph-based signatures , 2016, Nucleic Acids Res..

[63]  Weston B Struwe,et al.  Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein , 2016, Cell reports.

[64]  Yanay Ofran,et al.  Antibody specific epitope prediction-emergence of a new paradigm. , 2015, Current opinion in virology.

[65]  Leo Liberti,et al.  An algorithm to enumerate all possible protein conformations verifying a set of distance constraints , 2015, BMC Bioinformatics.

[66]  Jiye Shi,et al.  SAbDab: the structural antibody database , 2013, Nucleic Acids Res..

[67]  Arnaud Céol,et al.  3did: a catalog of domain-based interactions of known three-dimensional structure , 2013, Nucleic Acids Res..

[68]  Steven H. Kleinstein,et al.  Models of Somatic Hypermutation Targeting and Substitution Based on Synonymous Mutations from High-Throughput Immunoglobulin Sequencing Data , 2013, Front. Immunol..

[69]  Paolo Marcatili,et al.  Prediction of site-specific interactions in antibody-antigen complexes: the proABC method and server , 2013, Bioinform..

[70]  Charlotte M. Deane,et al.  Producing High-Accuracy Lattice Models from Protein Atomic Coordinates Including Side Chains , 2012, Adv. Bioinformatics.

[71]  A. Shepherd,et al.  An analysis of B-cell epitope discontinuity , 2012, Molecular immunology.

[72]  Yanay Ofran,et al.  Paratome: an online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure , 2012, Nucleic Acids Res..

[73]  P. Karplus,et al.  (φ,ψ)₂ motifs: a purely conformation-based fine-grained enumeration of protein parts at the two-residue level. , 2012, Journal of molecular biology.

[74]  Luca Varani,et al.  Computational Docking of Antibody-Antigen Complexes, Opportunities and Pitfalls Illustrated by Influenza Hemagglutinin , 2011, International journal of molecular sciences.

[75]  Guy Lapalme,et al.  A systematic analysis of performance measures for classification tasks , 2009, Inf. Process. Manag..

[76]  Mehrdad Shahshahani,et al.  Distributing Points on the Sphere, I , 2003, Exp. Math..

[77]  J. Thornton,et al.  Continuous and discontinuous protein antigenic determinants , 1986, Nature.