Visual feature integration and the temporal correlation hypothesis.

The mammalian visual system is endowed with a nearly infinite capacity for the recognition of patterns and objects. To have acquired this capability the visual system must have solved what is a fundamentally combinatorial prob­ lem. Any given image consists of a collection of features, consisting of local contrast borders of luminance and wavelength, distributed across the visual field. For one to detect and recognize an object within a scene, the features comprising the object must be identified and segregated from those comprising other objects. This problem is inherently difficult to solve because of the combinatorial nature of visual images. To appreciate this point, consider a simple local feature such as a small vertically oriented line segment placed within a fixed location of the visual field. When combined with other line segments, this feature can form a nearly infinite number of geometrical objects. Any one of these objects may coexist with an equally large number of other

[1]  J. Krüger,et al.  Multimicroelectrode investigation of monkey striate cortex: spike train correlations in the infragranular layers. , 1988, Journal of neurophysiology.

[2]  W. Singer,et al.  Squint Affects Synchronization of Oscillatory Responses in Cat Visual Cortex , 1993, The European journal of neuroscience.

[3]  K. Tanaka,et al.  Organization of cat visual cortex as investigated by cross-correlation technique. , 1981, Journal of neurophysiology.

[4]  E. Callaway,et al.  Emergence and refinement of clustered horizontal connections in cat striate cortex , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  W. Singer Synchronization of cortical activity and its putative role in information processing and learning. , 1993, Annual review of physiology.

[6]  E. Rolls,et al.  Selectivity between faces in the responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey , 1985, Brain Research.

[7]  Y. Miyashita,et al.  Neural organization for the long-term memory of paired associates , 1991, Nature.

[8]  S. Bressler,et al.  Episodic multiregional cortical coherence at multiple frequencies during visual task performance , 1993, Nature.

[9]  B. Connors,et al.  Electrophysiological properties of neocortical neurons in vitro. , 1982, Journal of neurophysiology.

[10]  G. Buzsáki,et al.  High-frequency network oscillation in the hippocampus. , 1992, Science.

[11]  C. Koch,et al.  Towards a neurobiological theory of consciousness , 1990 .

[12]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[13]  A. J. Mistlin,et al.  Visual neurones responsive to faces , 1987, Trends in Neurosciences.

[14]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  P. Andersen,et al.  Two generators of hippocampal theta activity in rabbits , 1975, Brain Research.

[16]  Martin I. Sereno,et al.  Cortical visual areas in mammals , 1991 .

[17]  K. Tanaka,et al.  Cross-Correlation Analysis of Interneuronal Connectivity in cat visual cortex. , 1981, Journal of neurophysiology.

[18]  W. Singer,et al.  Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. , 1992, Science.

[19]  Steven L. Bressler Relation of olfactory bulb and cortex. I. Spatial variation of bulbocortical interdependence , 1987, Brain Research.

[20]  L. S. Leung,et al.  Fast (beta) rhythms in the hippocampus: A review , 1992, Hippocampus.

[21]  Michael Brosch,et al.  Stimulus-Specific Synchronizations in Cat Visual Cortex: Multiple Microelectrode and Correlation Studies from Several Cortical Areas , 1992 .

[22]  J. Bolz,et al.  Functional specificity of a long-range horizontal connection in cat visual cortex: a cross-correlation study , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  W. P. Boger,et al.  Binocular Vision and Ocular Motility: Theory and Management of Strabismus , 1986 .

[24]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. , 1967, Biophysical journal.

[25]  W. Singer,et al.  Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex , 1991, Science.

[26]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[27]  F. Varela,et al.  Visually Triggered Neuronal Oscillations in the Pigeon: An Autocorrelation Study of Tectal Activity , 1993, The European journal of neuroscience.

[28]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[29]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[30]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  George L. Gerstein,et al.  Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex , 1994, Nature.

[32]  K. Reinikainen,et al.  Selective attention enhances the auditory 40-Hz transient response in humans , 1993, Nature.

[33]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  R. Freeman,et al.  Oscillatory discharge in the visual system: does it have a functional role? , 1992, Journal of neurophysiology.

[35]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[36]  M. Ariel,et al.  Rhythmicity in rabbit retinal ganglion cell responses , 1983, Vision Research.

[37]  C. Blakemore,et al.  The postnatal development of the association projection from visual cortical area 17 to area 18 in the cat , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  T. Wiesel,et al.  Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[40]  J Krüger,et al.  Multi-microelectrode investigation of monkey striate cortex: Link between correlational and neuronal properties in the infragranular layers , 1990, Visual Neuroscience.

[41]  C W SEM-JACOBSEN,et al.  Electroencephalographic rhythms from the depths of the parietal, occipital and temporal lobes in man. , 1956, Electroencephalography and clinical neurophysiology.

[42]  E. Fetz,et al.  Intracortical connectivity revealed by spike-triggered averaging in slice preparations of cat visual cortex , 1988, Brain Research.

[43]  K. D. Singh,et al.  Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J. Robson,et al.  Nature of the maintained discharge of Q, X, and Y retinal ganglion cells of the cat. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[45]  Ad Aertsen,et al.  Coding and Computation in the Cortex: Single-Neuron Activity and Cooperative Phenomena , 1992 .

[46]  TJ Gawne,et al.  How independent are the messages carried by adjacent inferior temporal cortical neurons? , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  C. Malsburg Nervous Structures with Dynamical Links , 1985 .

[48]  H. Tamura,et al.  Horizontal interactions between visual cortical neurones studied by cross‐correlation analysis in the cat. , 1991, The Journal of physiology.

[49]  S. Grossberg How does a brain build a cognitive code , 1980 .

[50]  Leslie G. Ungerleider,et al.  Contour, color and shape analysis beyond the striate cortex , 1985, Vision Research.

[51]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[52]  M. Young,et al.  On oscillating neuronal responses in the visual cortex of the monkey. , 1992, Journal of neurophysiology.

[53]  M. Young,et al.  Sparse population coding of faces in the inferotemporal cortex. , 1992, Science.

[54]  D. V. van Essen,et al.  Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. , 1993, Science.

[55]  C Blakemore Different neural origins for 'blur' amblyopia and strabismic amblyopia , 1992 .

[56]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[57]  W. Singer,et al.  Synchronization of oscillatory neuronal responses in cat striate cortex: Temporal properties , 1992, Visual Neuroscience.

[58]  E. Başar EEG — Dynamics and Evoked Potentials in Sensory and Cognitive Processing by the Brain , 1988 .

[59]  Paul Antoine Salin,et al.  Spatial and temporal coherence in cortico-cortical connections: a cross-correlation study in areas 17 and 18 in the cat. , 1992, Visual neuroscience.

[60]  E. Adrian,et al.  The electrical activity of the mammalian olfactory bulb. , 1950, Electroencephalography and clinical neurophysiology.

[61]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  G. Buzsáki,et al.  Cellular bases of hippocampal EEG in the behaving rat , 1983, Brain Research Reviews.

[64]  R W DOTY,et al.  Oscillatory potentials in the visual system of cats and monkeys , 1963, The Journal of physiology.

[65]  S L Bressler,et al.  Spatial organization of EEGs from olfactory bulb and cortex. , 1984, Electroencephalography and clinical neurophysiology.

[66]  J. Bower,et al.  Cortical oscillations and temporal interactions in a computer simulation of piriform cortex. , 1992, Journal of neurophysiology.

[67]  M. Ahissar,et al.  Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. , 1992, Science.

[68]  P König,et al.  Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[69]  D. Whitteridge,et al.  Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. , 1984, The Journal of physiology.

[70]  D. Hubel,et al.  Binocular interaction in striate cortex of kittens reared with artificial squint. , 1965, Journal of neurophysiology.

[71]  J. Bouyer,et al.  Fast fronto-parietal rhythms during combined focused attentive behaviour and immobility in cat: cortical and thalamic localizations. , 1981, Electroencephalography and clinical neurophysiology.

[72]  M. Tovée,et al.  Oscillatory activity is not evident in the primate temporal visual cortex with static stimuli , 1992, Neuroreport.

[73]  R. Eckhorn,et al.  High frequency (60-90 Hz) oscillations in primary visual cortex of awake monkey. , 1993, Neuroreport.

[74]  T. Wiesel,et al.  Clustered intrinsic connections in cat visual cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  E. Callaway,et al.  Effects of binocular deprivation on the development of clustered horizontal connections in cat striate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[76]  V. Bringuier,et al.  Synaptic origin of rhythmic visually evoked activity in kitten area 17 neurones. , 1992, Neuroreport.

[77]  A. Thomson,et al.  Fluctuations in pyramid-pyramid excitatory postsynaptic potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired intracellular recordings in rat neocortex , 1993, Neuroscience.

[78]  J. Bouyer,et al.  Anatomical localization of cortical beta rhythms in cat , 1987, Neuroscience.

[79]  R. Bickford,et al.  Depth electrographic study of a fast rhythm evoked from the human calcarine region by steady illumination. , 1960, Electroencephalography and clinical neurophysiology.

[80]  J. Bouyer,et al.  Ventral mesencephalic tegmentum (VMT) controls electrocortical beta rhythms and associated attentive behaviour in the cat , 1982, Behavioural Brain Research.

[81]  M. Cynader,et al.  Anatomical properties and physiological correlates of the intrinsic connections in cat area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  W. Singer,et al.  Oscillatory Neuronal Responses in the Visual Cortex of the Awake Macaque Monkey , 1992, The European journal of neuroscience.

[83]  B R Payne,et al.  Evidence for visual cortical area homologs in cat and macaque monkey. , 1993, Cerebral cortex.

[84]  W. Freeman Spatial properties of an EEG event in the olfactory bulb and cortex. , 1978, Electroencephalography and clinical neurophysiology.

[85]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[86]  A. Aertsen,et al.  Neuronal assemblies , 1989, IEEE Transactions on Biomedical Engineering.

[87]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[88]  M. Verzeano,et al.  Periodic activity in the visual system of the cat. , 1967, Vision research.

[89]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[90]  C. Blakemore,et al.  Single-fibre EPSPs in layer 5 of rat visual cortex in vitro. , 1993, Neuroreport.

[91]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  W. Singer,et al.  Stimulus‐Dependent Neuronal Oscillations in Cat Visual Cortex: Receptive Field Properties and Feature Dependence , 1990, The European journal of neuroscience.

[93]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[94]  S Makeig,et al.  Human auditory evoked gamma-band magnetic fields. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[95]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[96]  S. Grossberg,et al.  How does a brain build a cognitive code? , 1980, Psychological review.

[97]  R. Llinás,et al.  In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[98]  D. Frost,et al.  Effects of visual experience on the maturation of the efferent system to the corpus callosum , 1979, Nature.

[99]  C. Perez-Borja,et al.  Depth electrographic studies of a focal fast response to sensory stimulation in the human , 1961 .

[100]  E. Fetz,et al.  Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[101]  H. J. Luhmann,et al.  Horizontal Interactions in Cat Striate Cortex: I. Anatomical Substrate and Postnatal Development , 1990, The European journal of neuroscience.

[102]  V. Braitenberg Cell Assemblies in the Cerebral Cortex , 1978 .

[103]  T. Elbert,et al.  Oscillatory Event-Related Brain Dynamics , 1994, NATO ASI Series.

[104]  H. Tamura,et al.  Inhibition contributes to orientation selectivity in visual cortex of cat , 1988, Nature.

[105]  J. Donoghue,et al.  Oscillations in local field potentials of the primate motor cortex during voluntary movement. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[106]  K. Stratford,et al.  Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[107]  P. Milner A model for visual shape recognition. , 1974, Psychological review.

[108]  Rodney J. Douglas,et al.  Synchronization of Bursting Action Potential Discharge in a Model Network of Neocortical Neurons , 1991, Neural Computation.

[109]  S. Makeig,et al.  A 40-Hz auditory potential recorded from the human scalp. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[110]  K. H. Britten,et al.  Power spectrum analysis of bursting cells in area MT in the behaving monkey , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.