Resolution enhancement of multilook imagery for the multispectral thermal imager

This paper studies the feasibility of enhancing the spatial resolution of multilook Multispectral Thermal Imager (MTI) imagery using an iterative resolution enhancement algorithm known as Projection Onto Convex Sets (POCS). A multiangle satellite image modeling tool is implemented, and simulated multilook MTI imagery is formed to test the resolution enhancement algorithm. Experiments are done to determine the optimal configuration and number of multiangle low-resolution images needed for a quantitative improvement in the spatial resolution of the high-resolution estimate. The issues of atmospheric path radiance and directional reflectance variations are explored to determine their effect on the resolution enhancement performance.

[1]  A. Galbraith Resolution Enhancement of Multilook Imagery , 2004 .

[2]  A. Galbraith Resolution enhancement of multi-look imagery , 2004 .

[3]  Robert L. Stevenson,et al.  Image resampling and constraint formulation for multiframe superresolution restoration , 2003, IS&T/SPIE Electronic Imaging.

[4]  Moon Gi Kang,et al.  Super-resolution image reconstruction: a technical overview , 2003, IEEE Signal Process. Mag..

[5]  M. C. Edwards,et al.  The Advanced Along Track Scanning Radiometer: validation and early data , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[6]  Paul A. Pope,et al.  Automated coregistration of MTI spectral bands , 2002, SPIE Defense + Commercial Sensing.

[7]  Frank W. Gerlach,et al.  IKONOS technical performance assessment , 2001, SPIE Defense + Commercial Sensing.

[8]  Anthony B. Davis,et al.  MTI science, data products, and ground-data processing overview , 2001, SPIE Defense + Commercial Sensing.

[9]  Tom H. Miers,et al.  Ball global imaging system for Earth remote sensing , 2001, SPIE Remote Sensing.

[10]  Jo Bermyn,et al.  PROBA (Project for On-board Autonomy) , 2000 .

[11]  David M. Bullington,et al.  Multispectral Thermal Imager (MTI) payload overview , 1999, Optics & Photonics.

[12]  R. Rex Kay,et al.  Multispectral Thermal Imager mission overview , 1999, Optics & Photonics.

[13]  Siamak Khorram,et al.  The effects of image misregistration on the accuracy of remotely sensed change detection , 1998, IEEE Trans. Geosci. Remote. Sens..

[14]  Robert L. Stevenson,et al.  Super-resolution from image sequences-a review , 1998, 1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268).

[15]  Bernard Pinty,et al.  Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview , 1998, IEEE Trans. Geosci. Remote. Sens..

[16]  S. Sandmeier,et al.  Sensitivity analysis and quality assessment of laboratory BRDF data , 1998 .

[17]  Douglas J. Granrath,et al.  Fusion of images on affine sampling grids , 1998 .

[18]  Gerald C. Holst,et al.  Sampling, Aliasing, and Data Fidelity for Electronic Imaging Systems, Communications, and Data Acquisition , 1998 .

[19]  William J. Emery,et al.  Higher resolution Earth surface features from repeat moderate resolution satellite imagery , 1998, IEEE Trans. Geosci. Remote. Sens..

[20]  John R. Schott,et al.  Remote Sensing: The Image Chain Approach , 1996 .

[21]  Bobby R. Hunt,et al.  Super‐resolution of images: Algorithms, principles, performance , 1995, Int. J. Imaging Syst. Technol..

[22]  William J. Emery,et al.  Unmixing multiple land-cover type reflectances from coarse spatial resolution satellite data , 1995 .

[23]  A. Murat Tekalp,et al.  POCS-based restoration of space-varying blurred images , 1994, IEEE Trans. Image Process..

[24]  José F. Moreno,et al.  An optimum interpolation method applied to the resampling of NOAA AVHRR data , 1994, IEEE Trans. Geosci. Remote. Sens..

[25]  Christopher Justice,et al.  The impact of misregistration on change detection , 1992, IEEE Trans. Geosci. Remote. Sens..

[26]  A. Murat Tekalp,et al.  High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[27]  M. Ibrahim Sezan,et al.  An overview of convex projections theory and its application to image recovery problems , 1992 .

[28]  George Wolberg,et al.  Digital image warping , 1990 .

[29]  Henry Stark,et al.  Iterative and one-step reconstruction from nonuniform samples by convex projections , 1990 .

[30]  H Stark,et al.  High-resolution image recovery from image-plane arrays, using convex projections. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[31]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[32]  D. Youla,et al.  Image Restoration by the Method of Convex Projections: Part 1ߞTheory , 1982, IEEE Transactions on Medical Imaging.

[33]  M. Sezan,et al.  Image Restoration by the Method of Convex Projections: Part 2-Applications and Numerical Results , 1982, IEEE Transactions on Medical Imaging.

[34]  A. Lent,et al.  An iterative method for the extrapolation of band-limited functions , 1981 .

[35]  A. Papoulis Linear systems, Fourier transforms, and optics , 1981, Proceedings of the IEEE.

[36]  Thomas Kailath,et al.  Linear Systems , 1980 .

[37]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[38]  一岡 芳樹,et al.  J. D. Gaskill: Linear Systems, Fourier Transforms, and Optics, John Wiley & Sons, New York, 1978, xiv+554ページ, 23.5×15.5cm, $24.96 (Wiley Sons in Pure and Applied Optics). , 1979 .

[39]  Dante C. Youla,et al.  Generalized Image Restoration by the Method of Alternating Orthogonal Projections , 1978 .

[40]  J. Goodman Introduction to Fourier optics , 1969 .