Cortical travelling waves: mechanisms and computational principles

Multichannel recording technologies have revealed travelling waves of neural activity in multiple sensory, motor and cognitive systems. These waves can be spontaneously generated by recurrent circuits or evoked by external stimuli. They travel along brain networks at multiple scales, transiently modulating spiking and excitability as they pass. Here, we review recent experimental findings that have found evidence for travelling waves at single-area (mesoscopic) and whole-brain (macroscopic) scales. We place these findings in the context of the current theoretical understanding of wave generation and propagation in recurrent networks. During the large low-frequency rhythms of sleep or the relatively desynchronized state of the awake cortex, travelling waves may serve a variety of functions, from long-term memory consolidation to processing of dynamic visual stimuli. We explore new avenues for experimental and computational understanding of the role of spatiotemporal activity patterns in the cortex.

[1]  Bard Ermentrout,et al.  Waves and Patterns on Regular Graphs , 2015, SIAM J. Appl. Dyn. Syst..

[2]  K. D. Singh,et al.  Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Tatsuo K Sato,et al.  Traveling Waves in Visual Cortex , 2012, Neuron.

[4]  H. Jasper,et al.  Electrocorticograms in man: Effect of voluntary movement upon the electrical activity of the precentral gyrus , 1949 .

[5]  Pulin Gong,et al.  Propagating Waves Can Explain Irregular Neural Dynamics , 2015, The Journal of Neuroscience.

[6]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[7]  B. Connors,et al.  Initiation, Propagation, and Termination of Epileptiform Activity in Rodent Neocortex In Vitro Involve Distinct Mechanisms , 2005, The Journal of Neuroscience.

[8]  F. Chavane,et al.  Dynamics of Local Input Normalization Result from Balanced Short- and Long-Range Intracortical Interactions in Area V1 , 2012, The Journal of Neuroscience.

[9]  Alain Destexhe,et al.  Improving voltage-sensitive dye imaging: with a little help from computational approaches , 2017, Neurophotonics.

[10]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[11]  Kazutaka Takahashi,et al.  Proximal-to-Distal Sequencing Behavior and Motor Cortex , 2010 .

[12]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[13]  D. Kleinfeld,et al.  Traveling Electrical Waves in Cortex Insights from Phase Dynamics and Speculation on a Computational Role , 2001, Neuron.

[14]  A. Schüz Cortical areas : unity and diversity , 2002 .

[15]  Pascal Fries,et al.  Gamma-Rhythmic Gain Modulation , 2016, Neuron.

[16]  C. Gilbert Adult cortical dynamics. , 1998, Physiological reviews.

[17]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[18]  Stephen Coombes,et al.  Neural fields : theory and applications , 2014 .

[19]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[20]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[21]  G. Buzsáki,et al.  Local Generation and Propagation of Ripples along the Septotemporal Axis of the Hippocampus , 2013, The Journal of Neuroscience.

[22]  Theodoros P. Zanos,et al.  A Sensorimotor Role for Traveling Waves in Primate Visual Cortex , 2015, Neuron.

[23]  W. Penfield,et al.  Electrocorticograms in man: Effect of voluntary movement upon the electrical activity of the precentral gyrus , 2005, Archiv für Psychiatrie und Nervenkrankheiten.

[24]  Frank C. Hoppensteadt,et al.  Polychronous Wavefront Computations , 2009, Int. J. Bifurc. Chaos.

[25]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[26]  Gustavo Deco,et al.  Intra-cortical propagation of EEG alpha oscillations , 2014, NeuroImage.

[27]  C. Blakemore,et al.  Lateral inhibition between orientation detectors in the cat's visual cortex , 2004, Experimental Brain Research.

[28]  C. Petersen,et al.  Visualizing the Cortical Representation of Whisker Touch: Voltage-Sensitive Dye Imaging in Freely Moving Mice , 2006, Neuron.

[29]  W. Singer,et al.  Frontiers in Integrative Neuroscience Integrative Neuroscience Neural Synchrony in Cortical Networks: History, Concept and Current Status , 2022 .

[30]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[31]  Ian Nauhaus,et al.  Robustness of Traveling Waves in Ongoing Activity of Visual Cortex , 2012, The Journal of Neuroscience.

[32]  Sydney S. Cash,et al.  Distribution, Amplitude, Incidence, Co-Occurrence, and Propagation of Human K-Complexes in Focal Transcortical Recordings1,2,3 , 2015, eNeuro.

[33]  R A Normann,et al.  The Utah intracortical Electrode Array: a recording structure for potential brain-computer interfaces. , 1997, Electroencephalography and clinical neurophysiology.

[34]  P. Roelfsema,et al.  Distinct Feedforward and Feedback Effects of Microstimulation in Visual Cortex Reveal Neural Mechanisms of Texture Segregation , 2017, Neuron.

[35]  B. McNaughton,et al.  Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[37]  O. Faugeras,et al.  Stability of the stationary solutions of neural field equations with propagation delays , 2011, Journal of mathematical neuroscience.

[38]  Viktor Varga,et al.  Complex Propagation Patterns Characterize Human Cortical Activity during Slow-Wave Sleep , 2011, The Journal of Neuroscience.

[39]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[40]  Thomas S. Collett,et al.  Experiments and Models , 1983 .

[41]  J. Maunsell,et al.  Network Rhythms Influence the Relationship between Spike-Triggered Local Field Potential and Functional Connectivity , 2011, The Journal of Neuroscience.

[42]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[43]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[44]  J. Maunsell,et al.  Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex , 2011, PLoS biology.

[45]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[46]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[47]  P. Fries,et al.  Both ongoing alpha and visually induced gamma oscillations show reliable diversity in their across-site phase-relations. , 2015, Journal of neurophysiology.

[48]  Alain Destexhe,et al.  Inhibition Determines Membrane Potential Dynamics and Controls Action Potential Generation in Awake and Sleeping Cat Cortex , 2007, The Journal of Neuroscience.

[49]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[50]  James Rankin,et al.  Neural field model to reconcile structure with function in primary visual cortex , 2017, PLoS Comput. Biol..

[51]  R. Yuste,et al.  Feedforward Inhibition Contributes to the Control of Epileptiform Propagation Speed , 2007, The Journal of Neuroscience.

[52]  Feng Qi Han,et al.  Reverberation of Recent Visual Experience in Spontaneous Cortical Waves , 2008, Neuron.

[53]  Remus Osan,et al.  Two dimensional synaptically generated traveling waves in a theta-neuron neural network , 2001, Neurocomputing.

[54]  D. Kleinfeld,et al.  Visual stimuli induce waves of electrical activity in turtle cortex. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[55]  T. Sejnowski,et al.  Natural patterns of activity and long-term synaptic plasticity , 2000, Current Opinion in Neurobiology.

[56]  A. Destexhe,et al.  Propagating waves in thalamus, cortex and the thalamocortical system: Experiments and models , 2012, Journal of Physiology-Paris.

[57]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[58]  F. Chavane,et al.  The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave , 2014, Nature Communications.

[59]  M. Carandini,et al.  Stimulus contrast modulates functional connectivity in visual cortex , 2009, Nature Neuroscience.

[60]  Yves Frégnac,et al.  Synaptic Correlates of Low-Level Perception in V1 , 2016, The Journal of Neuroscience.

[61]  N. Hatsopoulos,et al.  Propagating waves mediate information transfer in the motor cortex , 2006, Nature Neuroscience.

[62]  Seunghoon Lee,et al.  A transient network of intrinsically bursting starburst cells underlies the generation of retinal waves , 2006, Nature Neuroscience.

[63]  John F. Powell,et al.  Brussels and Lugano Conventions: What They Are, What They Do , 1994 .

[64]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[65]  Alexander S. Ecker,et al.  Decorrelated Neuronal Firing in Cortical Microcircuits , 2010, Science.

[66]  M. Crair,et al.  Retinal waves coordinate patterned activity throughout the developing visual system , 2012, Nature.

[67]  Johanna Ruescher,et al.  Traveling waves and trial averaging: The nature of single-trial and averaged brain responses in large-scale cortical signals , 2013, NeuroImage.

[68]  Ian H. Stevenson,et al.  Spatially Distributed Local Fields in the Hippocampus Encode Rat Position , 2014, Science.

[69]  Eric Halgren,et al.  Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night , 2016, eLife.

[70]  Jean Bennett,et al.  Lateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex , 2002, Neuron.

[71]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[72]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[73]  T. Sejnowski,et al.  The Book of Hebb , 1999, Neuron.

[74]  I. Fried,et al.  Regional Slow Waves and Spindles in Human Sleep , 2011, Neuron.

[75]  Pascal Fries,et al.  Rhythmic neuronal synchronization in visual cortex entails spatial phase relation diversity that is modulated by stimulation and attention , 2013, NeuroImage.

[76]  A. Grinvald,et al.  Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Tai Sing Lee,et al.  Contextual Influences in Visual Processing , 2008 .

[78]  Akitoshi Hanazawa,et al.  Cortical Dynamics Subserving Visual Apparent Motion , 2008, Cerebral cortex.

[79]  Grzegorz Rozenberg,et al.  Handbook of Natural Computing , 2011, Springer Berlin Heidelberg.

[80]  F. Chavane,et al.  Imaging cortical correlates of illusion in early visual cortex , 2004, Nature.

[81]  G. Buzsáki,et al.  NeuroGrid: recording action potentials from the surface of the brain , 2014, Nature Neuroscience.

[82]  G. Buzsáki,et al.  High-frequency network oscillation in the hippocampus. , 1992, Science.

[83]  Jacob G. Bernstein,et al.  Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain , 2009, Neuron.

[84]  A. Destexhe,et al.  Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[85]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[86]  U. Polat,et al.  Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments , 1993, Vision Research.

[87]  R. Reid,et al.  Synchronous activity in the visual system. , 1999, Annual review of physiology.

[88]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[89]  J. Poulet,et al.  Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice , 2008, Nature.

[90]  P. Bressloff Spatiotemporal dynamics of continuum neural fields , 2012 .

[91]  Claude Bédard,et al.  Mean-Field Formulation of Maxwell Equations to Model Electrically Inhomogeneous and Isotropic Media , 2014 .

[92]  Tomoki Fukai,et al.  Supercomputers Ready for Use as Discovery Machines for Neuroscience , 2012, Front. Neuroinform..

[93]  Kevin A. Brown,et al.  Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex , 2015, Nature Communications.

[94]  A. Riehle,et al.  Mapping the spatio-temporal structure of motor cortical LFP and spiking activities during reach-to-grasp movements , 2013, Front. Neural Circuits.

[95]  Matthew T. Kaufman,et al.  An optogenetic toolbox designed for primates , 2011, Nature Neuroscience.

[96]  Jian-Young Wu,et al.  Propagating Waves of Activity in the Neocortex: What They Are, What They Do , 2008, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[97]  Bernhard Schölkopf,et al.  Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer , 2015, PLoS biology.

[98]  John J. Foxe,et al.  Propagating Neocortical Gamma Bursts Are Coordinated by Traveling Alpha Waves , 2013, The Journal of Neuroscience.

[99]  Cees van Leeuwen,et al.  Distributed Dynamical Computation in Neural Circuits with Propagating Coherent Activity Patterns , 2009, PLoS Comput. Biol..

[100]  G. Buzsáki,et al.  Memory, navigation and theta rhythm in the hippocampal-entorhinal system , 2013, Nature Neuroscience.

[101]  H. Berger Über das Elektrenkephalogramm des Menschen , 1929, Archiv für Psychiatrie und Nervenkrankheiten.

[102]  David Fitzpatrick,et al.  Optogenetic Assessment of Horizontal Interactions in Primary Visual Cortex , 2014, The Journal of Neuroscience.

[103]  W. Singer,et al.  Gamma-Phase Shifting in Awake Monkey Visual Cortex , 2010, The Journal of Neuroscience.

[104]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[105]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[106]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[107]  Bart Krekelberg,et al.  Neural Correlates of Saccadic Suppression in Humans , 2004, Current Biology.

[108]  Hie-Tae Moon,et al.  Time-delayed spatial patterns in a two-dimensional array of coupled oscillators. , 2002, Physical review letters.

[109]  Jean Lorenceau,et al.  Orientation dependent modulation of apparent speed: psychophysical evidence , 2002, Vision Research.

[110]  Evgueniy V. Lubenov,et al.  Hippocampal theta oscillations are travelling waves , 2009, Nature.

[111]  Omar J. Ahmed,et al.  Finding synchrony in the desynchronized EEG: the history and interpretation of gamma rhythms , 2013, Front. Integr. Neurosci..

[112]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[113]  A. Grinvald,et al.  Imaging Cortical Dynamics at High Spatial and Temporal Resolution with Novel Blue Voltage-Sensitive Dyes , 1999, Neuron.

[114]  Nikola T. Markov,et al.  Weight Consistency Specifies Regularities of Macaque Cortical Networks , 2010, Cerebral cortex.

[115]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[116]  P. Fries,et al.  Diverse Phase Relations among Neuronal Rhythms and Their Potential Function , 2016, Trends in Neurosciences.

[117]  Thierry Bal,et al.  A framework to reconcile frequency scaling measurements, from intracellular recordings, local-field potentials, up to EEG and MEG signals. , 2016, Journal of integrative neuroscience.

[118]  R. Shapley,et al.  New perspectives on the mechanisms for orientation selectivity , 1997, Current Opinion in Neurobiology.

[119]  Albert K. Lee,et al.  Memory of Sequential Experience in the Hippocampus during Slow Wave Sleep , 2002, Neuron.

[120]  T. Sejnowski,et al.  Storing covariance with nonlinearly interacting neurons , 1977, Journal of mathematical biology.

[121]  A. Grinvald,et al.  Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys. , 2002, Journal of neurophysiology.

[122]  M. Sirota,et al.  Sharp, local synchrony among putative feed-forward inhibitory interneurons of rabbit somatosensory cortex. , 1998, Journal of neurophysiology.

[123]  Tetsuya Asai,et al.  Reaction-diffusion computers , 2005 .

[124]  Sean L. Hill,et al.  The Sleep Slow Oscillation as a Traveling Wave , 2004, The Journal of Neuroscience.

[125]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[126]  Alain Destexhe,et al.  Neuronal Computations with Stochastic Network States , 2006, Science.

[127]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[128]  Erik Edwards,et al.  Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography , 2016, Journal of neural engineering.

[129]  T. Hafting,et al.  Finite Scale of Spatial Representation in the Hippocampus , 2008, Science.

[130]  A. Grinvald,et al.  Linking spontaneous activity of single cortical neurons and the underlying functional architecture. , 1999, Science.

[131]  W. Freeman,et al.  Analysis of spatial patterns of phase in neocortical gamma EEGs in rabbit. , 2000, Journal of neurophysiology.

[132]  J. Donoghue,et al.  Oscillations in local field potentials of the primate motor cortex during voluntary movement. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[133]  Dimitri M. Kullmann,et al.  Oscillations and Filtering Networks Support Flexible Routing of Information , 2010, Neuron.

[134]  Y. Couder,et al.  Wave-Based Turing Machine: Time Reversal and Information Erasing. , 2016, Physical review letters.

[135]  I. Fried,et al.  Sleep Spindles in Humans: Insights from Intracranial EEG and Unit Recordings , 2011, The Journal of Neuroscience.

[136]  J. Jacobs,et al.  Traveling Theta Waves in the Human Hippocampus , 2015, The Journal of Neuroscience.

[137]  F. Chavane,et al.  Lateral Spread of Orientation Selectivity in V1 is Controlled by Intracortical Cooperativity , 2011, Front. Syst. Neurosci..

[138]  Harvey Swadlow,et al.  Axonal conduction delays , 2012, Scholarpedia.

[139]  B. Ermentrout,et al.  Delays and weakly coupled neuronal oscillators , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[140]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[141]  P. Roland,et al.  Cortical feedback depolarization waves: A mechanism of top-down influence on early visual areas , 2006, Proceedings of the National Academy of Sciences.

[142]  S. Vijay Anand,et al.  The linearity and selectivity of neuronal responses in awake visual cortex. , 2009, Journal of vision.

[143]  Robert F Hess,et al.  Contour integration in the peripheral field , 1999, Vision Research.

[144]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[145]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[146]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[147]  P. Andersen,et al.  Two generators of hippocampal theta activity in rabbits , 1975, Brain Research.

[148]  Alain Destexhe,et al.  How neuronal correlations affect the LFP signal? , 2015, BMC Neuroscience.

[149]  J. Bullier,et al.  Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. , 2001, Journal of neurophysiology.

[150]  J. R. Hughes,et al.  The Phenomenon of Travelling Waves: A Review , 1995, Clinical EEG.

[151]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[152]  G. Buzsáki,et al.  Traveling Theta Waves along the Entire Septotemporal Axis of the Hippocampus , 2012, Neuron.

[153]  Reinhard Eckhorn,et al.  A multi-channel correlation method detects traveling γ-waves in monkey visual cortex , 2003, Journal of Neuroscience Methods.

[154]  Jian-Young Wu,et al.  Compression and Reflection of Visually Evoked Cortical Waves , 2007, Neuron.

[155]  E. Seidemann,et al.  Complex Dynamics of V1 Population Responses Explained by a Simple Gain-Control Model , 2009, Neuron.

[156]  J. Lisman,et al.  Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro , 1995, Neuron.

[157]  N. Hatsopoulos,et al.  Propagating Waves in Human Motor Cortex , 2011, Front. Hum. Neurosci..

[158]  L. Colgin Mechanisms and functions of theta rhythms. , 2013, Annual review of neuroscience.

[159]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[160]  M K Habib,et al.  Dynamics of neuronal firing correlation: modulation of "effective connectivity". , 1989, Journal of neurophysiology.

[161]  David J. Field,et al.  How Close Are We to Understanding V1? , 2005, Neural Computation.

[162]  Markus Diesmann,et al.  Spike-Timing-Dependent Plasticity in Balanced Random Networks , 2007, Neural Computation.