Calcium Green FlAsH as a genetically targeted small-molecule calcium indicator.

[1]  A. E. Lacerda,et al.  A new site for the activation of cardiac calcium channels defined by the nondihydropyridine FPL 64176. , 1991, The Journal of pharmacology and experimental therapeutics.

[2]  R Y Tsien,et al.  Specific covalent labeling of recombinant protein molecules inside live cells. , 1998, Science.

[3]  David Baker,et al.  Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. , 2006, Chemistry & biology.

[4]  Brent R. Martin,et al.  Mammalian cell–based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity , 2005, Nature Biotechnology.

[5]  Tullio Pozzan,et al.  Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin , 1992, Nature.

[6]  H Parnas,et al.  Parallel computation enables precise description of Ca2+ distribution in nerve terminals. , 1996, Bulletin of mathematical biology.

[7]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[8]  B Sakmann,et al.  Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem , 1998, The Journal of physiology.

[9]  M. Brini,et al.  Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. , 1995, The EMBO journal.

[10]  Manuel F. Navedo,et al.  Constitutively active L-type Ca2+ channels. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Amy E Palmer,et al.  Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Ohkura,et al.  Local subplasma membrane Ca2+ signals detected by a tethered Ca2+ sensor , 2006, Proceedings of the National Academy of Sciences.

[13]  K. Beam,et al.  Tagging with green fluorescent protein reveals a distinct subcellular distribution of L-type and non-L-type Ca2+ channels expressed in dysgenic myotubes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  E. Lakatta,et al.  Ion concentration-dependence of rat cardiac unitary L-type calcium channel conductance. , 2001, Biophysical journal.

[15]  Huda Y. Zoghbi,et al.  Increased Expression of α1A Ca2+Channel Currents Arising from Expanded Trinucleotide Repeats in Spinocerebellar Ataxia Type 6 , 2001, The Journal of Neuroscience.

[16]  Lawrence M. Lifshitz,et al.  Imaging Ca2+ Entering the Cytoplasm through a Single Opening of a Plasma Membrane Cation Channel , 1999, The Journal of general physiology.

[17]  A. W. Czarnik,et al.  Fluorescent chemosensors for ion and molecule recognition , 1993 .

[18]  E. F. Stanley Single calcium channels and acetylcholine release at a presynaptic nerve terminal , 1993, Neuron.

[19]  J. Regini,et al.  The effect of temperature on the Donnan potentials in biological polyelectrolyte gels: cornea and striated muscle. , 2001, International journal of biological macromolecules.

[20]  R. Llinás,et al.  High-resolution measurement of the time course of calcium-concentration microdomains at squid presynaptic terminals. , 1994, The Biological bulletin.

[21]  W. Yamada,et al.  Time course of transmitter release calculated from simulations of a calcium diffusion model. , 1992, Biophysical journal.

[22]  Ian Parker,et al.  Optical single-channel recording by imaging Ca2+ flux through individual ion channels: theoretical considerations and limits to resolution. , 2005, Cell calcium.

[23]  Ralf Schneggenburger,et al.  Intracellular calcium dependence of transmitter release rates at a fast central synapse , 2000, Nature.

[24]  I. Parker,et al.  “Optical Patch-clamping” , 2005, The Journal of general physiology.

[25]  Tullio Pozzan,et al.  Microdomains of intracellular Ca2+: molecular determinants and functional consequences. , 2006, Physiological reviews.

[26]  Q. Han,et al.  Caffeine induced Ca2+ release and capacitative Ca2+ entry in human embryonic kidney (HEK293) cells. , 2005, European journal of pharmacology.

[27]  E. Neher,et al.  Linearized Buffered Ca2+ Diffusion in Microdomains and Its Implications for Calculation of [Ca2+] at the Mouth of a Calcium Channel , 1997, The Journal of Neuroscience.

[28]  W. Almers,et al.  Imaging Calcium Entry Sites and Ribbon Structures in Two Presynaptic Cells , 2003, The Journal of Neuroscience.

[29]  Alexander Borst,et al.  A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. , 2006, Biophysical journal.

[30]  T. Pozzan,et al.  Nuclear Ca2+ concentration measured with specifically targeted recombinant aequorin. , 1993, The EMBO journal.

[31]  Camillo Peracchia,et al.  Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. , 2004, Biochimica et biophysica acta.

[32]  Ian Parker,et al.  Flux through Individual Muscle Acetylcholine Receptor Channels , 2005 .

[33]  Robert E Campbell,et al.  New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. , 2002, Journal of the American Chemical Society.

[34]  N. Dascal,et al.  Ca2+ current enhancement by alpha 2/delta and beta subunits in Xenopus oocytes: contribution of changes in channel gating and alpha 1 protein level. , 1995, The Journal of physiology.

[35]  R. Llinás,et al.  Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. , 1985, Biophysical journal.

[36]  Roger Y Tsien,et al.  Genetically targeted chromophore-assisted light inactivation , 2003, Nature Biotechnology.

[37]  T. Pozzan,et al.  Domains of high Ca2+ beneath the plasma membrane of living A7r5 cells , 1997, The EMBO journal.

[38]  G. Augustine,et al.  Local Calcium Signaling in Neurons , 2003, Neuron.

[39]  R Llinás,et al.  Microdomains of high calcium concentration in a presynaptic terminal. , 1992, Science.

[40]  D. DiGregorio,et al.  Measurement of Action Potential-Induced Presynaptic Calcium Domains at a Cultured Neuromuscular Junction , 1999, The Journal of Neuroscience.

[41]  R. London,et al.  Measurement of cytosolic free magnesium ion concentration by 19F NMR. , 1988, Biochemistry.

[42]  M. Kuhn 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′,-tetraacetic Acid Conjugates Used To Measure Intracellular Ca2+Concentration , 1993 .

[43]  R. Rizzuto Microdomains of Intracellular Ca : Molecular Determinants and Functional Consequences , 2005 .

[44]  I. Parnas,et al.  Autoreceptors, membrane potential and the regulation of transmitter release , 2000, Trends in Neurosciences.

[45]  M. Naraghi,et al.  T-jump study of calcium binding kinetics of calcium chelators. , 1997, Cell calcium.

[46]  E. F. Stanley,et al.  Single L‐type calcium channel conductance with physiological levels of calcium in chick ciliary ganglion neurons. , 1996, The Journal of physiology.

[47]  R. Tsien,et al.  A monomeric red fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Thomas J Deerinck,et al.  Multicolor and Electron Microscopic Imaging of Connexin Trafficking , 2002, Science.