The CMB temperature power spectrum from an improved analysis of the Archeops data

We present improved results on the measurement of the angular power spectrum of the Cosmic Microwave Background (CMB) temperature anisotropies using the data from the last Archeops flight. This refined analysis is obtained by using the 6 most sensitive photometric pixels in the CMB bands centered at 143 and 217 GHz and 20% of the sky, mostly clear of foregrounds. Using two different cross-correlation methods, we obtain very similar results for the angular power spectrum. Consistency checks are performed to test the robustness of these results paying particular attention to the foreground contamination level which remains well below the statistical uncertainties. The multipole range from l=10 to l=700 is covered with 25 bins, confirming strong evidence for a plateau at large angular scales (the Sachs-Wolfe plateau) followed by two acoustic peaks centered around l=220 and l=550 respectively. These data provide an independent confirmation, obtained at different frequencies, of the WMAP first year results.

[1]  P. Farese,et al.  First Measurements of the Polarization of the Cosmic Microwave Background Radiation at Small Angular Scales from CAPMAP , 2004, astro-ph/0409380.

[2]  C. Renault,et al.  XSPECT, estimation of the angular power spectrum by computing cross-power spectra with analytical error bars , 2004, astro-ph/0405575.

[3]  C. Renault,et al.  ASYMFAST : A method for convolving maps with asymmetric main beams , 2003, astro-ph/0310260.

[4]  J. Hamilton,et al.  Noise power spectrum estimation and fast map making for CMB experiments , 2003, astro-ph/0307203.

[5]  J. Bond,et al.  Polarization Observations with the Cosmic Background Imager , 2001, Science.

[6]  G. Patanchon Multi-component power spectra estimation method for multi-detector observations of the Cosmic Microwave Background , 2003, astro-ph/0311305.

[7]  F. Bouchet,et al.  The Planck High Frequency Instrument, a third generation CMB experiment, and a full sky submillimeter survey , 2003, astro-ph/0308075.

[8]  M. Douspis,et al.  Cosmological constraints in Λ-CDM and quintessence paradigms with Archeops , 2003, astro-ph/0305392.

[9]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[10]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[11]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Angular Power Spectrum , 2003, astro-ph/0302217.

[12]  F. Couchot,et al.  Concerning the connection between the Cℓ power spectrum of the cosmic microwave background and the Γm Fourier spectrum of rings on the sky , 2003, astro-ph/0301251.

[13]  S. Masi,et al.  The cosmic microwave background anisotropy power spectrum measured by archeops , 2002, astro-ph/0210305.

[14]  J. Bartlett,et al.  Cosmological constraints from archeops , 2002, astro-ph/0210306.

[15]  J. Bond,et al.  Cosmological Parameters from Cosmic Background Imager Observations and Comparisons with BOOMERANG, DASI, and MAXIMA , 2002, astro-ph/0205387.

[16]  Elizabeth Waldram,et al.  First results from the Very Small Array - IV. Cosmological parameter estimation , 2002, astro-ph/0205367.

[17]  J. Cardoso,et al.  Multidetector multicomponent spectral matching and applications for cosmic microwave background data analysis , 2002, astro-ph/0211504.

[18]  O. Dor'e,et al.  Elliptical beams in CMB temperature and polarization anisotropy experiments: An analytic approach , 2001, astro-ph/0107346.

[19]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[20]  A. Melchiorri,et al.  A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background , 2001, astro-ph/0104460.

[21]  Caltech,et al.  Degree Angular Scale Interferometer First Results: A Measurement of the Cosmic Microwave Background Angular Power Spectrum , 2001, astro-ph/0104489.

[22]  Adrian T. Lee,et al.  A High Spatial Resolution Analysis of the MAXIMA-1 Cosmic Microwave Background Anisotropy Data , 2001, astro-ph/0104459.

[23]  Alexander S. Szalay,et al.  Fast Cosmic Microwave Background Analyses via Correlation Functions , 2001 .

[24]  A. Melchiorri,et al.  A flat Universe from high-resolution maps of the cosmic microwave background radiation , 2000, Nature.

[25]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[26]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[27]  J. Delabrouille,et al.  Circular scans for cosmic microwave background anisotropy observation and analysis , 1997, astro-ph/9710349.

[28]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[29]  Edward J. Wollack,et al.  A Measurement of the Angular Power Spectrum of the Anisotropy in the Cosmic Microwave Background , 1996, astro-ph/9601197.

[30]  C. Bennett,et al.  Cosmic microwave background dipole spectrum measured by the COBE FIRAS instrument , 1994 .

[31]  S. White THE EVOLUTION OF LARGE SCALE STRUCTURE , 1984 .

[32]  M. G. Hauser,et al.  Statistical analysis of catalogs of extragalactic objects. III - The Shane-Wirtanen and Zwicky catalogs , 1974 .

[33]  William H. Julian,et al.  On the effect of interstellar material on stellar non-circular velocities in disk galaxies. , 1967 .