Brain-Source Imaging: From sparse to tensor models

A number of application areas such as biomedical engineering require solving an underdetermined linear inverse problem. In such a case, it is necessary to make assumptions on the sources to restore identifiability. This problem is encountered in brain-source imaging when identifying the source signals from noisy electroencephalographic or magnetoencephalographic measurements. This inverse problem has been widely studied during recent decades, giving rise to an impressive number of methods using different priors. Nevertheless, a thorough study of the latter, including especially sparse and tensor-based approaches, is still missing. In this article, we propose 1) a taxonomy of the algorithms based on methodological considerations; 2) a discussion of the identifiability and convergence properties, advantages, drawbacks, and application domains of various techniques; and 3) an illustration of the performance of seven selected methods on identical data sets. Directions for future research in the area of biomedical imaging are eventually provided.

[1]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[2]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[3]  Joachim Möcks,et al.  Decomposing event-related potentials: A new topographic components model , 1988, Biological Psychology.

[4]  J.C. Mosher,et al.  Multiple dipole modeling and localization from spatio-temporal MEG data , 1992, IEEE Transactions on Biomedical Engineering.

[5]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[6]  D. Lehmann,et al.  Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[7]  I F Gorodnitsky,et al.  Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. , 1995, Electroencephalography and clinical neurophysiology.

[8]  M. Fuchs,et al.  Smooth reconstruction of cortical sources from EEG or MEG recordings , 1996, NeuroImage.

[9]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[10]  K. Matsuura,et al.  A robust reconstruction of sparse biomagnetic sources , 1997, IEEE Transactions on Biomedical Engineering.

[11]  E. Somersalo,et al.  Visualization of Magnetoencephalographic Data Using Minimum Current Estimates , 1999, NeuroImage.

[12]  E. Halgren,et al.  Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.

[13]  A. Schnitzler,et al.  Dynamic imaging of coherent sources: Studying neural interactions in the human brain. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  I. Merlet Dipole modeling of interictal and ictal EEG and MEG paroxysms. , 2002, Epileptic disorders : international epilepsy journal with videotape.

[15]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[16]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[17]  M. Murray,et al.  EEG source imaging , 2004, Clinical Neurophysiology.

[18]  Kensuke Sekihara,et al.  Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction , 2005, NeuroImage.

[19]  Julius P. A. Dewald,et al.  Evaluation of different cortical source localization methods using simulated and experimental EEG data , 2005, NeuroImage.

[20]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[21]  Barry D. Van Veen,et al.  Cortical patch basis model for spatially extended neural activity , 2006, IEEE Transactions on Biomedical Engineering.

[22]  A. Ferreol,et al.  High-Resolution Direction Finding From Higher Order Statistics: The$2rm q$-MUSIC Algorithm , 2006, IEEE Transactions on Signal Processing.

[23]  Jie Chen,et al.  Theoretical Results on Sparse Representations of Multiple-Measurement Vectors , 2006, IEEE Transactions on Signal Processing.

[24]  Anders M. Dale,et al.  Vector-based spatial–temporal minimum L1-norm solution for MEG , 2006, NeuroImage.

[25]  Karl J. Friston,et al.  MEG source localization under multiple constraints: An extended Bayesian framework , 2006, NeuroImage.

[26]  A. Dale,et al.  Distributed current estimates using cortical orientation constraints , 2006, Human brain mapping.

[27]  Dezhong Yao,et al.  Lp Norm Iterative Sparse Solution for EEG Source Localization , 2007, IEEE Transactions on Biomedical Engineering.

[28]  Polina Golland,et al.  A Distributed Spatio-temporal EEG/MEG Inverse Solver , 2008, MICCAI.

[29]  Bart Vanrumste,et al.  Journal of Neuroengineering and Rehabilitation Open Access Review on Solving the Inverse Problem in Eeg Source Analysis , 2022 .

[30]  Laurent Albera,et al.  Brain Source Localization Using a Fourth-Order Deflation Scheme , 2008, IEEE Transactions on Biomedical Engineering.

[31]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[32]  Lei Ding,et al.  Sparse source imaging in electroencephalography with accurate field modeling , 2008, Human brain mapping.

[33]  Pedro A. Valdes-Sosa,et al.  Penalized Least Squares methods for solving the EEG Inverse Problem , 2008 .

[34]  Andreas Ziehe,et al.  Combining sparsity and rotational invariance in EEG/MEG source reconstruction , 2008, NeuroImage.

[35]  Robert D. Nowak,et al.  Space–time event sparse penalization for magneto-/electroencephalography , 2009, NeuroImage.

[36]  S. Huffel,et al.  Neonatal seizure localization using PARAFAC decomposition , 2009, Clinical Neurophysiology.

[37]  P. Comon,et al.  Tensor decompositions, alternating least squares and other tales , 2009 .

[38]  Laurent Albera,et al.  Canonical decomposition of even order hermitian positive semi-definite arrays , 2009, 2009 17th European Signal Processing Conference.

[39]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[40]  Lei Ding,et al.  Reconstructing cortical current density by exploring sparseness in the transform domain , 2009, Physics in medicine and biology.

[41]  Alexandre Gramfort,et al.  Mapping, timing and tracking cortical activations with MEG and EEG: Methods and application to human vision. (Localisation et suivi d'activité fonctionnelle cérébrale en électro et magnétoencéphalographie: Méthodes et applications au système visuel humain) , 2009 .

[42]  David P. Wipf,et al.  A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.

[43]  Julia P. Owen,et al.  Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG , 2010, NeuroImage.

[44]  Jen-Chuen Hsieh,et al.  Spatially sparse source cluster modeling by compressive neuromagnetic tomography , 2010, NeuroImage.

[45]  Anthony T. Herdman,et al.  Application of multi-source minimum variance beamformers for reconstruction of correlated neural activity , 2009, NeuroImage.

[46]  C. Im,et al.  Evaluation of Algorithms for Intracranial EEG (iEEG) Source Imaging of Extended Sources: Feasibility of Using iEEG Source Imaging for Localizing Epileptogenic Zones in Secondary Generalized Epilepsy , 2011, Brain Topography.

[47]  Zhimin Li,et al.  A spatio-temporal solution for the EEG/MEG inverse problem using group penalization methods , 2011 .

[48]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[49]  Laurent Albera,et al.  Localization of extended brain sources from EEG/MEG: The ExSo-MUSIC approach , 2011, NeuroImage.

[50]  Deanna L. Dickens,et al.  Sparse imaging of cortical electrical current densities via wavelet transforms , 2012, Physics in medicine and biology.

[51]  A. Gramfort,et al.  Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods , 2012, Physics in medicine and biology.

[52]  Florian Roemer,et al.  A semi-algebraic framework for approximate CP decompositions via simultaneous matrix diagonalizations (SECSI) , 2013, Signal Process..

[53]  Jens Haueisen,et al.  Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations , 2013, NeuroImage.

[54]  X. Luciani,et al.  Canonical Polyadic Decomposition based on joint eigenvalue decomposition , 2014 .

[55]  Hanna Becker,et al.  Denoising, separation and localization of EEG sources in the context of epilepsy , 2014 .

[56]  Pierre Comon,et al.  Blind Multilinear Identification , 2012, IEEE Transactions on Information Theory.

[57]  F Wendling,et al.  EEG extended source localization: Tensor-based vs. conventional methods , 2014, NeuroImage.