Solution of Generalized Geometric Programs

A cutting plane algorithm for the solution of generalized geometric programs with bounded variables is described and then illustrated by the detailed solution of a small numerical example. Convergence of this algorithm to a Kuhn-Tucker point of the program is assured if an initial feasible solution is available to initiate the algorithm. An algorithm for determining a feasible solution to a set of generalized posynomial inequalities which may be used to find a global minimum to the program as well as test for consistency of the constraint set, is also presented. Finally an application in optimal engineering design with seven variables and fourteen nonlinear inequality constraints is formulated and solved.