As Based On The Normal Kernels Probability Density Function

The IDEA framework is a general framework for iterated density estimation evolutionary algorithms. These algorithms use probabilistic models to guide the search in stochastic optimization. The estimation of densities for subsets of selected samples and the sampling from the resulting distributions, is the combination of the evolutionary recombination and mutation steps used in EAs. We investigate how the normal kernels probability density function can be used as the distribution of the problem variables in order to perform optimization using the IDEA framework. As a result, we present three probability density structure search algorithms, as well as a general estimation and sampling algorithm, all of which use the normal kernels distribution.

[1]  Michèle Sebag,et al.  Extending Population-Based Incremental Learning to Continuous Search Spaces , 1998, PPSN.

[2]  Paul A. Viola,et al.  MIMIC: Finding Optima by Estimating Probability Densities , 1996, NIPS.

[3]  G. Harik Linkage Learning via Probabilistic Modeling in the ECGA , 1999 .

[4]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[5]  Dirk Thierens,et al.  Linkage Information Processing In Distribution Estimation Algorithms , 1999, GECCO.

[6]  Louise Travé-Massuyès,et al.  Telephone Network Traffic Overloading Diagnosis and Evolutionary Computation Techniques , 1997, Artificial Evolution.

[7]  M. Pelikán,et al.  The Bivariate Marginal Distribution Algorithm , 1999 .

[8]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[9]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[10]  Heinz Mühlenbein,et al.  Schemata, Distributions and Graphical Models in Evolutionary Optimization , 1999, J. Heuristics.

[11]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[12]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[13]  P. Bosman,et al.  An algorithmic framework for density estimation based evolutionary algorithms , 1999 .

[14]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[15]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[16]  Rich Caruana,et al.  Removing the Genetics from the Standard Genetic Algorithm , 1995, ICML.

[17]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[18]  Marcus Gallagher,et al.  Real-valued Evolutionary Optimization using a Flexible Probability Density Estimator , 1999, GECCO.

[19]  S. Baluja,et al.  Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the Structure of the Search Space , 1997 .