Drawing Nice Projections of Objects in Space

Our results on regular and minimum-crossing projections of line segments have immediate corollaries for polygonal chains, polygons, trees and more general geometric graphs in 3-D since these are all special cases of sets of line segments. Our results also have application to graph drawing for knot-theorists. Let K be a knot with n vertices. To study the knot's combinatorial properties, knot theorists obtain a planar graph G called the diagram of K by a regular projection of K. Many of their algorithms are applied to G and therefore their time complexity depends on the space complexity of G. By combining our algorithms we can obtain regular projections with the minimum number of crossings thereby minimizing the time complexity of their algorithms.

[1]  Peter R. Keller,et al.  Visual cues - practical data visualization , 1993 .

[2]  Karol Borsuk Multidimensional Analytic Geometry , 1969 .

[3]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[4]  Godfried T. Toussaint,et al.  Movable Separability of Sets , 1985 .

[5]  Jirí Matousek,et al.  Complexity of Projected Images of Convex Subdivisions , 1994, Comput. Geom..

[6]  Nimrod Megiddo,et al.  Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[7]  David S. Johnson,et al.  Crossing Number is NP-Complete , 1983 .

[8]  Raimund Seidel,et al.  Finding the optimal shadows of a convex polytope , 1985, SCG '85.

[9]  Thomas Ertl,et al.  Computer graphics—principles and practice , 1997 .

[10]  Farhad Shahrokhi,et al.  Crossing Numbers of Graphs, Lower Bound Techniques , 1994, GD.

[11]  David Avis,et al.  Algorithms for line transversals in space , 1987, SCG '87.

[12]  Roberto Tamassia,et al.  On the Compuational Complexity of Upward and Rectilinear Planarity Testing , 1994, Graph Drawing.

[13]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[14]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[15]  Roberto Tamassia,et al.  Efficient Point Location in a Convex Spatial Cell-Complex , 1989, SIAM J. Comput..

[16]  Azriel Rosenfeld,et al.  Polygons in Three Dimensions , 1994, J. Vis. Commun. Image Represent..

[17]  David Eppstein,et al.  On triangulating three-dimensional polygons , 1996, SCG '96.

[18]  Charles Livingston,et al.  Knot Theory by Charles Livingston , 1993 .

[19]  David Avis,et al.  Polyhedral line transversals in space , 1988, Discret. Comput. Geom..

[20]  Franco P. Preparata,et al.  Plane-sweep algorithms for intersecting geometric figures , 1982, CACM.

[21]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[22]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[23]  D. Souvaine,et al.  The contour problem for restricted-orientation polygons , 1992 .

[24]  G. Strang The Width of a Chair , 1982 .

[25]  Franco P. Preparata,et al.  Plane - sweep algorithms for intersecting geometric figures , 1981 .

[26]  Nancy M. Amato,et al.  Computing faces in segment and simplex arrangements , 1995, STOC '95.

[27]  Ioannis G. Tollis,et al.  Algorithms for Drawing Graphs: an Annotated Bibliography , 1988, Comput. Geom..

[28]  Chi-Yuan Lo,et al.  Time efficient VLSI artwork analysis algorithms in GOALIE2 , 1988, DAC '88.

[29]  Ivan J. Balaban,et al.  An optimal algorithm for finding segments intersections , 1995, SCG '95.

[30]  Harold Neville Vazeille Temperley,et al.  Graph theory and applications , 1981 .

[31]  James E. pLebensohn Geometry and the Imagination , 1952 .

[32]  Satoru Kawai,et al.  A simple method for computing general position in displaying three-dimensional objects , 1988, Comput. Vis. Graph. Image Process..

[33]  Peter Gritzmann,et al.  Polytope Projection and Projection Polytopes , 1996, Universität Trier, Mathematik/Informatik, Forschungsbericht.