EMERGENT PHENOMENA IN GENETIC PROGRAMMING

Evolutionary computation systems exhibit various emergent phenomena, primary of which is adaptation. In genetic programming, because of the indeterminate nature of the representation, the evolution of both recombination distributions and representations can emerge from the population dynamics. A review of ideas on these phenomena is presented, including theory on the evolution of evolvability through differential proliferation of subexpressions within programs. An analysis is given of a model of genetic programming dynamics that is supportive of the “Soft Brood Selection” conjecture, which was proposed as a means to counteract the emergence of highly conservative code, and instead favor highly evolvable code.

[1]  George Henry Lewes,et al.  Problems of life and mind , 1874 .

[2]  M. Nei,et al.  Modification of linkage intensity by natural selection. , 1967, Genetics.

[3]  M W Feldman,et al.  Selection for linkage modification. I. Random mating populations. , 1972, Theoretical population biology.

[4]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[5]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[6]  B. Wallace HARD AND SOFT SELECTION REVISITED , 1975, Evolution; international journal of organic evolution.

[7]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[8]  M Conrad Mutation-absorption model of the enzyme. , 1979, Bulletin of mathematical biology.

[9]  M. Feldman,et al.  A general reduction principle for genetic modifiers of recombination. , 1986, Theoretical population biology.

[10]  C. G. Shaefer,et al.  The ARGOT Strategy: Adaptive Representation Genetic Optimizer Technique , 1987, ICGA.

[11]  J. David Schaffer,et al.  An Adaptive Crossover Distribution Mechanism for Genetic Algorithms , 1987, ICGA.

[12]  M W Feldman,et al.  Selection, generalized transmission and the evolution of modifier genes. I. The reduction principle. , 1987, Genetics.

[13]  J. Mallet The genetics of warning colour in Peruvian hybrid zones of Heliconius erato and H. melpomene , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[14]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms Revisited: Studies in Mixed Size and Scale , 1990, Complex Syst..

[15]  Thomas S. Ray,et al.  Is It Alive or Is It GA? , 1991, ICGA.

[16]  James R. Levenick Inserting Introns Improves Genetic Algorithm Success Rate: Taking a Cue from Biology , 1991, ICGA.

[17]  M. Feldman,et al.  Recombination dynamics and the fitness landscape , 1992 .

[18]  J. Pollack,et al.  Coevolving High-Level Representations , 1993 .

[19]  L. Altenberg The evolution of evolvability in genetic programming , 1994 .

[20]  Walter Alden Tackett,et al.  The unique implications of brood selection for genetic programming , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.