A new look at state-space models for neural data

State space methods have proven indispensable in neural data analysis. However, common methods for performing inference in state-space models with non-Gaussian observations rely on certain approximations which are not always accurate. Here we review direct optimization methods that avoid these approximations, but that nonetheless retain the computational efficiency of the approximate methods. We discuss a variety of examples, applying these direct optimization techniques to problems in spike train smoothing, stimulus decoding, parameter estimation, and inference of synaptic properties. Along the way, we point out connections to some related standard statistical methods, including spline smoothing and isotonic regression. Finally, we note that the computational methods reviewed here do not in fact depend on the state-space setting at all; instead, the key property we are exploiting involves the bandedness of certain matrices. We close by discussing some applications of this more general point of view, including Markov chain Monte Carlo methods for neural decoding and efficient estimation of spatially-varying firing rates.

[1]  G. Rybicki,et al.  Fast Solution for the Diagonal Elements of the Inverse of a Tridiagonal Matrix * , .

[2]  Klaus J. Utikal,et al.  A new method for detecting neural interconnectivity , 1997, Biological Cybernetics.

[3]  R. Yuste,et al.  Attractor dynamics of network UP states in the neocortex , 2003, Nature.

[4]  J. Møller,et al.  Log Gaussian Cox Processes , 1998 .

[5]  Alan Hawkes Stochastic Modelling of Single Ion Channels , 2003 .

[6]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[7]  Emery N Brown,et al.  Behavioral and neurophysiological analyses of dynamic learning processes. , 2005, Behavioral and cognitive neuroscience reviews.

[8]  Jonathon Shlens,et al.  The Structure of Large-Scale Synchronized Firing in Primate Retina , 2009, The Journal of Neuroscience.

[9]  Martina Poletti,et al.  Miniature eye movements enhance fine spatial detail , 2007, Nature.

[10]  Roberto Araya,et al.  The spine neck filters membrane potentials , 2006, Proceedings of the National Academy of Sciences.

[11]  E N Brown,et al.  A Statistical Paradigm for Neural Spike Train Decoding Applied to Position Prediction from Ensemble Firing Patterns of Rat Hippocampal Place Cells , 1998, The Journal of Neuroscience.

[12]  Kaare Brandt Petersen,et al.  State-Space Models: From the EM Algorithm to a Gradient Approach , 2007, Neural Computation.

[13]  Uri T Eden,et al.  A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. , 2005, Journal of neurophysiology.

[14]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[15]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[16]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[17]  David S. Stoffer,et al.  Time series analysis and its applications , 2000 .

[18]  Eric S. Raymond,et al.  The Cathedral & the Bazaar , 1999 .

[19]  Byron M. Yu,et al.  Extracting Dynamical Structure Embedded in Neural Activity , 2005, NIPS.

[20]  Jonathon Shlens,et al.  The Structure of Multi-Neuron Firing Patterns in Primate Retina , 2006, The Journal of Neuroscience.

[21]  John P. Donoghue,et al.  Connecting cortex to machines: recent advances in brain interfaces , 2002, Nature Neuroscience.

[22]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[23]  Liam Paninski,et al.  The most likely voltage path and large deviations approximations for integrate-and-fire neurons , 2006, Journal of Computational Neuroscience.

[24]  Kamiar Rahnama Rad,et al.  Efficient, adaptive estimation of two-dimensional firing rate surfaces via Gaussian process methods , 2010, Network.

[25]  David G. Hummer,et al.  An accelerated lambda iteration method for multilevel radiative transfer. II : Overlapping transitions with full continuum , 1992 .

[26]  William H. Press,et al.  Numerical recipes in C++: the art of scientific computing, 2nd Edition (C++ ed., print. is corrected to software version 2.10) , 1994 .

[27]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[28]  Richard H. R. Hahnloser,et al.  Spike sorting with hidden Markov models , 2008, Journal of Neuroscience Methods.

[29]  Michael J. Black,et al.  Probabilistic Inference of Hand Motion from Neural Activity in Motor Cortex , 2001, NIPS.

[30]  Kathryn B. Laskey,et al.  Neural Coding: Higher-Order Temporal Patterns in the Neurostatistics of Cell Assemblies , 2000, Neural Computation.

[31]  R. Kass,et al.  Multiple neural spike train data analysis: state-of-the-art and future challenges , 2004, Nature Neuroscience.

[32]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[33]  Robert J. Butera,et al.  Sequential Optimal Design of Neurophysiology Experiments , 2009, Neural Computation.

[34]  Liam Paninski,et al.  Inferring synaptic inputs given a noisy voltage trace via sequential Monte Carlo methods , 2012, Journal of Computational Neuroscience.

[35]  Matthew Fellows,et al.  Statistical encoding model for a primary motor cortical brain-machine interface , 2005, IEEE Transactions on Biomedical Engineering.

[36]  Edgar Morin,et al.  La nature de la nature , 1977 .

[37]  Y. Frégnac,et al.  Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex , 1996, Journal of Physiology-Paris.

[38]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[39]  Eric R. Ziegel,et al.  Multivariate Statistical Modelling Based on Generalized Linear Models , 2002, Technometrics.

[40]  Jianfeng Feng,et al.  Computational neuroscience , 1986, Behavioral and Brain Sciences.

[41]  Press,et al.  Class of fast methods for processing irregularly sampled or otherwise inhomogeneous one-dimensional data. , 1995, Physical review letters.

[42]  V. Solo,et al.  Contrasting Patterns of Receptive Field Plasticity in the Hippocampus and the Entorhinal Cortex: An Adaptive Filtering Approach , 2002, The Journal of Neuroscience.

[43]  J. Csicsvari,et al.  Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. , 2000, Journal of neurophysiology.

[44]  Pamela Reinagel,et al.  Decoding visual information from a population of retinal ganglion cells. , 1997, Journal of neurophysiology.

[45]  Satish Iyengar,et al.  The Analysis of Multiple Neural Spike Trains , 2003, Advances on Methodological and Applied Aspects of Probability and Statistics.

[46]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[47]  Wei Wu,et al.  Bayesian Population Decoding of Motor Cortical Activity Using a Kalman Filter , 2006, Neural Computation.

[48]  Tai Sing Lee,et al.  Decoding V1 Neuronal Activity using Particle Filtering with Volterra Kernels , 2003, NIPS.

[49]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[50]  L. Paninski,et al.  Superlinear Population Encoding of Dynamic Hand Trajectory in Primary Motor Cortex , 2004, The Journal of Neuroscience.

[51]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[52]  Dejan Zecevic,et al.  Functional Structure of the Mitral Cell Dendritic Tuft in the Rat Olfactory Bulb , 2008, The Journal of Neuroscience.

[53]  M Konishi,et al.  Cellular mechanisms for resolving phase ambiguity in the owl's inferior colliculus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Xiao-Li Meng,et al.  Using EM to Obtain Asymptotic Variance-Covariance Matrices: The SEM Algorithm , 1991 .

[55]  Emery N. Brown,et al.  Dynamic Analysis of Neural Encoding by Point Process Adaptive Filtering , 2004, Neural Computation.

[56]  D. Cox Some Statistical Methods Connected with Series of Events , 1955 .

[57]  Tom Heskes,et al.  Iterated extended Kalman smoothing with expectation-propagation , 2003, 2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718).

[58]  Emery N. Brown,et al.  A State-Space Analysis for Reconstruction of Goal-Directed Movements Using Neural Signals , 2006, Neural Computation.

[59]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[60]  Liam Paninski,et al.  State-space methods for inferring synaptic inputs and weights , 2007 .

[61]  B L McNaughton,et al.  Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. , 1998, Journal of neurophysiology.

[62]  Jerald D. Kralik,et al.  Chronic, multisite, multielectrode recordings in macaque monkeys , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[63]  William H. Press,et al.  Numerical recipes in C , 2002 .

[64]  Wei Wu,et al.  Neural Decoding of Hand Motion Using a Linear State-Space Model With Hidden States , 2009, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[65]  Uri T Eden,et al.  Analysis of between-trial and within-trial neural spiking dynamics. , 2008, Journal of neurophysiology.

[66]  Liam Paninski,et al.  Model-Based Decoding, Information Estimation, and Change-Point Detection Techniques for Multineuron Spike Trains , 2011, Neural Computation.

[67]  John P. Cunningham,et al.  Neural Decoding of Movements: From Linear to Nonlinear Trajectory Models , 2007, ICONIP.

[68]  P. Sen,et al.  Constrained Statistical Inference: Inequality, Order, and Shape Restrictions , 2001 .

[69]  M. Schnitzer,et al.  Multineuronal Firing Patterns in the Signal from Eye to Brain , 2003, Neuron.

[70]  Zoubin Ghahramani,et al.  Optimization with EM and Expectation-Conjugate-Gradient , 2003, ICML.

[71]  R. Kass,et al.  Statistical smoothing of neuronal data. , 2003, Network.

[72]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[73]  Byron M. Yu,et al.  Detecting neural-state transitions using hidden Markov models for motor cortical prostheses. , 2008, Journal of neurophysiology.

[74]  Donald L. Snyder,et al.  Random Point Processes in Time and Space , 1991 .

[75]  Duane Q. Nykamp,et al.  Revealing Pairwise Coupling in Linear-Nonlinear Networks , 2005, SIAM J. Appl. Math..

[76]  Robert E Kass,et al.  Statistical issues in the analysis of neuronal data. , 2005, Journal of neurophysiology.

[77]  José M. F. Moura,et al.  Block matrices with L-block-banded inverse: inversion algorithms , 2005, IEEE Transactions on Signal Processing.

[78]  Emery N Brown,et al.  Dynamic Analysis of Learning in Behavioral Experiments , 2004, The Journal of Neuroscience.

[79]  Scott A. Sisson,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2005 .

[80]  E. S. Chornoboy,et al.  Maximum likelihood identification of neural point process systems , 1988, Biological Cybernetics.

[81]  F. Rieke,et al.  Origin of correlated activity between parasol retinal ganglion cells , 2008, Nature Neuroscience.

[82]  Liam Paninski,et al.  Efficient Markov Chain Monte Carlo Methods for Decoding Neural Spike Trains , 2011, Neural Computation.

[83]  Michael A. West,et al.  Bayesian forecasting and dynamic models (2nd ed.) , 1997 .

[84]  Liam Paninski,et al.  Efficient estimation of detailed single-neuron models. , 2006, Journal of neurophysiology.

[85]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[86]  Michael J. Berry,et al.  Weak pairwise correlations imply strongly correlated network states in a neural population , 2005, Nature.

[87]  L. Paninski,et al.  Model-based decoding, information estimation, and change- point detection in multi-neuron spike trains , 2006 .

[88]  Paninski Liam Inferring functional connectivity in an ensemble of retinal ganglion cells sharing a common input , 2009 .

[89]  Nando de Freitas,et al.  Sequential Monte Carlo in Practice , 2001 .

[90]  Liam Paninski,et al.  Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models , 2010, Journal of Computational Neuroscience.

[91]  J.E. Kulkarni,et al.  State-Space Decoding of Goal-Directed Movements , 2008, IEEE Signal Processing Magazine.

[92]  R. Kass,et al.  Bayesian curve-fitting with free-knot splines , 2001 .

[93]  Nicholas J. Priebe,et al.  Direction Selectivity of Excitation and Inhibition in Simple Cells of the Cat Primary Visual Cortex , 2005, Neuron.

[94]  Emery N Brown,et al.  Analysis and design of behavioral experiments to characterize population learning. , 2005, Journal of neurophysiology.

[95]  S. Koopman,et al.  Monte Carlo estimation for nonlinear non-Gaussian state space models , 2007 .

[96]  Byron M. Yu,et al.  Expectation Propagation for Inference in Non-Linear Dynamical Models with Poisson Observations , 2006, 2006 IEEE Nonlinear Statistical Signal Processing Workshop.

[97]  Fred Rieke,et al.  Network Variability Limits Stimulus-Evoked Spike Timing Precision in Retinal Ganglion Cells , 2006, Neuron.

[98]  Matthew A. Wilson,et al.  Construction of Point Process Adaptive Filter Algorithms for Neural Systems Using Sequential Monte Carlo Methods , 2007, IEEE Transactions on Biomedical Engineering.

[99]  Emery N. Brown,et al.  Estimating a State-space Model from Point Process Observations Emery N. Brown , 2022 .

[100]  P. Abbeel,et al.  Kalman filtering , 2020, IEEE Control Systems Magazine.

[101]  L. Paninski,et al.  Common-input models for multiple neural spike-train data , 2007, Network.

[102]  Karl J. Friston,et al.  Bilinear dynamical systems , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[103]  John P. Cunningham,et al.  Fast Gaussian process methods for point process intensity estimation , 2008, ICML '08.

[104]  Robert H. Shumway,et al.  Time Series Analysis and Its Applications (Springer Texts in Statistics) , 2005 .

[105]  H. Sompolinsky,et al.  A Neural Computation for Visual Acuity in the Presence of Eye Movements , 2007, PLoS biology.

[106]  Liam Paninski,et al.  Log-concavity Results on Gaussian Process Methods for Supervised and Unsupervised Learning , 2004, NIPS.

[107]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[108]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[109]  Todd P. Coleman,et al.  A computationally efficient method for modeling neural spiking activity with point processes nonparametrically , 2007, 2007 46th IEEE Conference on Decision and Control.

[110]  Paninski Liam,et al.  A decoder-based spike train metric for analyzing the neural code in the retina , 2009 .

[111]  D. Q. Nykamp,et al.  A mathematical framework for inferring connectivity in probabilistic neuronal networks. , 2007, Mathematical biosciences.

[112]  Byron M. Yu,et al.  Mixture of Trajectory Models for Neural Decoding of Goal-directed Movements a Computational Model of Craving and Obsession Decoding Visual Inputs from Multiple Neurons in the Human Temporal Lobe Encoding Contribution of Individual Retinal Ganglion Cell Responses to Velocity and Acceleration , 2008 .

[113]  Bradley M. Bell,et al.  The Iterated Kalman Smoother as a Gauss-Newton Method , 1994, SIAM J. Optim..

[114]  L. Paninski Maximum likelihood estimation of cascade point-process neural encoding models , 2004, Network.

[115]  A. Doucet,et al.  Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.

[116]  E N Brown,et al.  An analysis of neural receptive field plasticity by point process adaptive filtering , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[117]  Melvin J. Hinich,et al.  Time Series Analysis by State Space Methods , 2001 .

[118]  Liam Paninski,et al.  Smoothing of, and Parameter Estimation from, Noisy Biophysical Recordings , 2009, PLoS Comput. Biol..

[119]  R E Kass,et al.  Recursive bayesian decoding of motor cortical signals by particle filtering. , 2004, Journal of neurophysiology.

[120]  A.M. Litke,et al.  What does the eye tell the brain?: Development of a system for the large scale recording of retinal output activity , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[121]  John P. Cunningham,et al.  Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes , 2007, NIPS.

[122]  Tom Minka,et al.  A family of algorithms for approximate Bayesian inference , 2001 .

[123]  L. Fahrmeir,et al.  On kalman filtering, posterior mode estimation and fisher scoring in dynamic exponential family regression , 1991 .

[124]  Naftali Tishby,et al.  Hidden Markov modelling of simultaneously recorded cells in the associative cortex of behaving monkeys , 1997 .

[125]  Zoubin Ghahramani,et al.  A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.

[126]  Brendon O. Watson,et al.  SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators , 2008, Frontiers in neural circuits.

[127]  Paul Miller,et al.  Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles , 2007, Proceedings of the National Academy of Sciences.

[128]  Joshua X. Gittelman,et al.  Rethinking Tuning: In Vivo Whole-Cell Recordings of the Inferior Colliculus in Awake Bats , 2007, The Journal of Neuroscience.

[129]  Qingbo Wang,et al.  Feedforward Excitation and Inhibition Evoke Dual Modes of Firing in the Cat's Visual Thalamus during Naturalistic Viewing , 2007, Neuron.

[130]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[131]  G. Rodríguez-Yam,et al.  ESTIMATION FOR STATE-SPACE MODELS BASED ON A LIKELIHOOD APPROXIMATION , 2005 .

[132]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.