Inference and computation with population codes.

In the vertebrate nervous system, sensory stimuli are typically encoded through the concerted activity of large populations of neurons. Classically, these patterns of activity have been treated as encoding the value of the stimulus (e.g., the orientation of a contour), and computation has been formalized in terms of function approximation. More recently, there have been several suggestions that neural computation is akin to a Bayesian inference process, with population activity patterns representing uncertainty about stimuli in the form of probability distributions (e.g., the probability density function over the orientation of a contour). This paper reviews both approaches, with a particular emphasis on the latter, which we see as a very promising framework for future modeling and experimental work.

[1]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[2]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[3]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[4]  M. Degroot Optimal Statistical Decisions , 1970 .

[5]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[6]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[7]  A. Dean The relationship between response amplitude and contrast for cat striate cortical neurones. , 1981, The Journal of physiology.

[8]  P. Thompson Perceived rate of movement depends on contrast , 1982, Vision Research.

[9]  A P Georgopoulos,et al.  On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Stephen Grossberg,et al.  Absolute stability of global pattern formation and parallel memory storage by competitive neural networks , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[12]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[13]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[14]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[15]  A. J. Mistlin,et al.  Visual cells in the temporal cortex sensitive to face view and gaze direction , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  D. Regan,et al.  Postadaptation orientation discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[17]  I. Ohzawa,et al.  The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. , 1987, Journal of neurophysiology.

[18]  D. Sparks,et al.  Population coding of saccadic eye movements by neurons in the superior colliculus , 1988, Nature.

[19]  T. Poggio A theory of how the brain might work. , 1990, Cold Spring Harbor symposia on quantitative biology.

[20]  Alexandre Pouget,et al.  Connectionist Models of Orientation Identification , 1991 .

[21]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[22]  J P Miller,et al.  Representation of sensory information in the cricket cercal sensory system. II. Information theoretic calculation of system accuracy and optimal tuning-curve widths of four primary interneurons. , 1991, Journal of neurophysiology.

[23]  E. Adelson,et al.  Directionally selective complex cells and the computation of motion energy in cat visual cortex , 1992, Vision Research.

[24]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[25]  P. Thompson,et al.  Human speed perception is contrast dependent , 1992, Vision Research.

[26]  P. Földiák,et al.  The ‘Ideal Homunculus’: Statistical Inference from Neural Population Responses , 1993 .

[27]  H Sompolinsky,et al.  Simple models for reading neuronal population codes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Zhaoping Li,et al.  Toward a Theory of the Striate Cortex , 1994, Neural Computation.

[29]  Mark E. Nelson,et al.  A Mechanism for Neuronal Gain Control by Descending Pathways , 1994, Neural Computation.

[30]  M. Graziano,et al.  Tuning of MST neurons to spiral motions , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  Terrence J. Sejnowski,et al.  Spatial Representations in the Parietal Cortex May Use Basis Functions , 1994, NIPS.

[32]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.

[33]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[34]  L F Abbott,et al.  Transfer of coded information from sensory to motor networks , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[36]  L. Abbott,et al.  A model of multiplicative neural responses in parietal cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Movshon,et al.  A computational analysis of the relationship between neuronal and behavioral responses to visual motion , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  K. Zhang,et al.  Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  H S Seung,et al.  How the brain keeps the eyes still. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[40]  T. Sanger,et al.  Probability density estimation for the interpretation of neural population codes. , 1996, Journal of neurophysiology.

[41]  N. Logothetis,et al.  Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry , 1996, Nature.

[42]  Peter Dayan,et al.  Combining Probabilistic Population Codes , 1997, IJCAI.

[43]  R. Wurtz,et al.  Responses of MT and MST neurons to one and two moving objects in the receptive field. , 1997, Journal of neurophysiology.

[44]  T. Sejnowski,et al.  Spatial Transformations in the Parietal Cortex Using Basis Functions , 1997, Journal of Cognitive Neuroscience.

[45]  Nicolas Brunel,et al.  Mutual Information, Fisher Information, and Population Coding , 1998, Neural Computation.

[46]  Peter E. Latham,et al.  Statistically Efficient Estimation Using Population Coding , 1998, Neural Computation.

[47]  D. Perrett,et al.  The `Ideal Homunculus': decoding neural population signals , 1998, Trends in Neurosciences.

[48]  A. P. Georgopoulos,et al.  Variability and Correlated Noise in the Discharge of Neurons in Motor and Parietal Areas of the Primate Cortex , 1998, The Journal of Neuroscience.

[49]  B. Richmond,et al.  Coding strategies in monkey V1 and inferior temporal cortices. , 1998, Journal of neurophysiology.

[50]  Haim Sompolinsky,et al.  The Effect of Correlations on the Fisher Information of Population Codes , 1998, NIPS.

[51]  Alexandre Pouget,et al.  Probabilistic Interpretation of Population Codes , 1996, Neural Computation.

[52]  Richard A. Andersen,et al.  Gaze coding in the posterior parietal cortex , 1998 .

[53]  Peter Dayan,et al.  The Effect of Correlated Variability on the Accuracy of a Population Code , 1999, Neural Computation.

[54]  Peter E. Latham,et al.  Narrow Versus Wide Tuning Curves: What's Best for a Population Code? , 1999, Neural Computation.

[55]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[56]  Daniel Kersten,et al.  High-level Vision as Statistical Inference , 1999 .

[57]  R. Snowden,et al.  The Effect of Contrast upon Perceived Speed: A General Phenomenon? , 1999, Perception.

[58]  Alexander Borst,et al.  Information theory and neural coding , 1999, Nature Neuroscience.

[59]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[60]  A. Pouget,et al.  Reading population codes: a neural implementation of ideal observers , 1999, Nature Neuroscience.

[61]  Thomas J. Anastasio,et al.  Using Bayes' Rule to Model Multisensory Enhancement in the Superior Colliculus , 2000, Neural Computation.

[62]  P. Goldman-Rakic,et al.  Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. , 2000, Cerebral cortex.

[63]  Stefan Treue,et al.  Seeing multiple directions of motion—physiology and psychophysics , 2000, Nature Neuroscience.

[64]  Christian W. Eurich,et al.  Multidimensional Encoding Strategy of Spiking Neurons , 2000, Neural Computation.

[65]  Stefan Treue,et al.  Different populations of neurons contribute to the detection and discrimination of visual motion , 2001, Vision Research.

[66]  Si Wu,et al.  Population Coding with Correlation and an Unfaithful Model , 2001, Neural Computation.

[67]  R. Blake © 2001 Kluwer Academic Publishers. Printed in the Netherlands. 5 A Primer on Binocular Rivalry, Including Current Controversies , 2000 .

[68]  David J. Fleet,et al.  Velocity Likelihoods in Biological and Machine Vision , 2001 .

[69]  H. Sompolinsky,et al.  Population coding in neuronal systems with correlated noise. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  J. Gold,et al.  Neural computations that underlie decisions about sensory stimuli , 2001, Trends in Cognitive Sciences.

[71]  A. Pouget,et al.  Efficient computation and cue integration with noisy population codes , 2001, Nature Neuroscience.

[72]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[73]  R. Jacobs What determines visual cue reliability? , 2002, Trends in Cognitive Sciences.

[74]  J. Cowan,et al.  The visual cortex as a crystal , 2002 .

[75]  M. Carandini,et al.  Testing the Bayesian model of perceived speed , 2002, Vision Research.

[76]  Edward H. Adelson,et al.  Motion illusions as optimal percepts , 2002, Nature Neuroscience.

[77]  Matthias Bethge,et al.  Optimal Short-Term Population Coding: When Fisher Information Fails , 2002, Neural Computation.

[78]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[79]  Christian W. Eurich,et al.  Representational Accuracy of Stochastic Neural Populations , 2002, Neural Computation.

[80]  N. Logothetis,et al.  Visual competition , 2002, Nature Reviews Neuroscience.

[81]  Alexandre Pouget,et al.  A computational perspective on the neural basis of multisensory spatial representations , 2002, Nature Reviews Neuroscience.

[82]  Bruno A. Olshausen,et al.  Book Review , 2003, Journal of Cognitive Neuroscience.

[83]  M. Paradiso,et al.  A theory for the use of visual orientation information which exploits the columnar structure of striate cortex , 2004, Biological Cybernetics.

[84]  Emilio Salinas,et al.  Vector reconstruction from firing rates , 1994, Journal of Computational Neuroscience.

[85]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[86]  Jan J. Koenderink,et al.  Information in channel-coded systems: correlated receivers , 1992, Biological Cybernetics.

[87]  Jan J. Koenderink,et al.  Discrimination thresholds for channel-coded systems , 1992, Biological Cybernetics.