Blind algebraic identification of communication channels: symbolic solution algorithms

We introduce in this paper a new algebraic approach to some problems arising in signal processing and communications that can be described as or reduced to systems of multivariate quadratic polynomial equations. Based on methods from computational algebraic geometry, the approach achieves a full description of the solution space and thus avoids the usual local minima issue of adaptive algorithms. Furthermore, unlike most symbolic methods, the computational cost is kept low by a subtle split of the problem into two stages. First, a symbolic pre-computation of normal forms is done offline once for all sets of parameters, to get a more convenient parametric trace-matrix representation of the problem. The solutions of the problem are then easily obtained for any set of parameters from this representation by solving a single univariate polynomial equation. This approach is quite general and can be applied to a wide variety of problems: SISO channel identification of PSK modulations but also filter design and MIMO blind source separation by deflation.

[1]  Philippe Trébuchet Vers une résolution stable et rapide des équations algébriques , 2002 .

[2]  John G. Proakis,et al.  Digital Communications , 1983 .

[3]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[4]  Marie-Françoise Roy,et al.  Counting real zeros in the multivariate case , 1993 .

[5]  L. Kronecker Grundzüge einer arithmetischen Theorie der algebraischen Grössen. (Abdruck einer Festschrift zu Herrn E. E. Kummers Doctor-Jubiläum, 10. September 1881.). , 2022 .

[6]  J. Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .

[7]  T. Kailath,et al.  A least-squares approach to blind channel identification , 1995, IEEE Trans. Signal Process..

[8]  P. Ciblat,et al.  New Proof for a Blind Equalization Result: A Module Theory Approach , 2001 .

[9]  H. Wynn,et al.  Algebraic Statistics: Computational Commutative Algebra in Statistics , 2000 .

[10]  Daniel Yellin,et al.  Blind identification of FIR systems excited by discrete-alphabet inputs , 1993, IEEE Trans. Signal Process..

[11]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[12]  Pierre Comon,et al.  Blind equalizers based on polynomial criteria , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[13]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[14]  Arogyaswami Paulraj,et al.  An analytical constant modulus algorithm , 1996, IEEE Trans. Signal Process..

[15]  John F. Canny Generalized Characteristic Polynomials , 1988, ISSAC.

[16]  Ioannis Z. Emiris,et al.  Monomial bases and polynomial system solving (extended abstract) , 1994, ISSAC '94.

[17]  Georgios B. Giannakis,et al.  Blind fractionally spaced equalization of noisy FIR channels: direct and adaptive solutions , 1997, IEEE Trans. Signal Process..

[18]  Gordon L. Stuber,et al.  Principles of Mobile Communication , 1996 .

[19]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[20]  Lajos Rónyai,et al.  Approximate radical of ideals with clusters of roots , 2006, ISSAC '06.

[21]  David Gesbert,et al.  Unbiased blind adaptive channel identification and equalization , 2000, IEEE Trans. Signal Process..

[22]  Pierre Comon,et al.  Analytical blind channel identification , 2002, IEEE Trans. Signal Process..

[23]  Fabrice Rouillier,et al.  Symbolic Recipes for Polynomial System Solving , 1999 .

[24]  B. Sturmfels SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .

[25]  Ivan W. Selesnick,et al.  Gröbner bases and wavelet design , 2004, J. Symb. Comput..

[26]  Bernard Mourrain,et al.  Generalized normal forms and polynomial system solving , 2005, ISSAC.

[27]  Ioannis Z. Emiris,et al.  Monomial bases and polynomial system solving , 1994, ISSAC 1994.

[28]  Éric Schost,et al.  Computing Parametric Geometric Resolutions , 2003, Applicable Algebra in Engineering, Communication and Computing.

[29]  Philippe Loubaton,et al.  Subspace methods for blind identification of SIMO-FIR systems , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[30]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[31]  D. Donoho ON MINIMUM ENTROPY DECONVOLUTION , 1981 .

[32]  Philippe Loubaton,et al.  On subspace methods for blind identification of single-input multiple-output FIR systems , 1997, IEEE Trans. Signal Process..

[33]  D. Godard,et al.  Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems , 1980, IEEE Trans. Commun..

[34]  Sergio Benedetto,et al.  Digital Transmission Theory , 1987 .

[35]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination , 1992, J. Symb. Comput..

[36]  John F. Canny,et al.  Generalised Characteristic Polynomials , 1990, J. Symb. Comput..

[37]  David Gesbert,et al.  On-line blind multichannel equalization based on mutually referenced filters , 1997, IEEE Trans. Signal Process..

[38]  J. M. Rojas,et al.  The Exact Rational Univariate Representation and Its Application , 2003 .

[39]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[40]  Thomas Kailath,et al.  Linear Systems , 1980 .