A Rational Analysis of the Acquisition of Multisensory Representations

How do people learn multisensory, or amodal, representations, and what consequences do these representations have for perceptual performance? We address this question by performing a rational analysis of the problem of learning multisensory representations. This analysis makes use of a Bayesian nonparametric model that acquires latent multisensory features that optimally explain the unisensory features arising in individual sensory modalities. The model qualitatively accounts for several important aspects of multisensory perception: (a) it integrates information from multiple sensory sources in such a way that it leads to superior performances in, for example, categorization tasks; (b) its performances suggest that multisensory training leads to better learning than unisensory training, even when testing is conducted in unisensory conditions; (c) its multisensory representations are modality invariant; and (d) it predicts ''missing" sensory representations in modalities when the input to those modalities is absent. Our rational analysis indicates that all of these aspects emerge as part of the optimal solution to the problem of learning to represent complex multisensory environments.

[1]  R. T. Cox The Algebra of Probable Inference , 1962 .

[2]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[3]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[4]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[5]  Roger N. Shepard,et al.  Additive clustering: Representation of similarities as combinations of discrete overlapping properties. , 1979 .

[6]  John R. Anderson The Adaptive Character of Thought , 1990 .

[7]  James J. Clark,et al.  Data Fusion for Sensory Information Processing Systems , 1990 .

[8]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[9]  Mongi A. Abidi,et al.  Data fusion in robotics and machine intelligence , 1992 .

[10]  Javier R. Movellan,et al.  Visual Speech Recognition with Stochastic Networks , 1994, NIPS.

[11]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[12]  M. Landy,et al.  Measurement and modeling of depth cue combination: in defense of weak fusion , 1995, Vision Research.

[13]  D. Massaro Perceiving talking faces: from speech perception to a behavioral principle , 1999 .

[14]  Krzysztof J. Cios,et al.  Advances in neural information processing systems 7 , 1997 .

[15]  Scott T. Grafton,et al.  Feeling with the mind's eye , 1997, Neuroreport.

[16]  E. Bullmore,et al.  Activation of auditory cortex during silent lipreading. , 1997, Science.

[17]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[18]  N. Chater,et al.  Rational models of cognition , 1998 .

[19]  Robert L. Goldstone,et al.  Definition , 1960, A Philosopher Looks at Sport.

[20]  N. Chater,et al.  Ten years of the rational analysis of cognition , 1999, Trends in Cognitive Sciences.

[21]  Scott T. Grafton,et al.  Involvement of visual cortex in tactile discrimination of orientation , 1999, Nature.

[22]  Carl E. Rasmussen,et al.  The Infinite Gaussian Mixture Model , 1999, NIPS.

[23]  J. Vroomen,et al.  The perception of emotions by ear and by eye , 2000 .

[24]  Thomas J. Anastasio,et al.  Using Bayes' Rule to Model Multisensory Enhancement in the Superior Colliculus , 2000, Neural Computation.

[25]  Carl E. Rasmussen,et al.  Occam's Razor , 2000, NIPS.

[26]  N. Chater,et al.  Rational models of cognition , 1998 .

[27]  Radford M. Neal Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[28]  J. Fuster,et al.  Visuo-tactile cross-modal associations in cortical somatosensory cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Wallace,et al.  Sensory and Multisensory Responses in the Newborn Monkey Superior Colliculus , 2001, The Journal of Neuroscience.

[30]  T. Hendler,et al.  Visuo-haptic object-related activation in the ventral visual pathway , 2001, Nature Neuroscience.

[31]  P. Green,et al.  Modelling Heterogeneity With and Without the Dirichlet Process , 2001 .

[32]  D. Massaro,et al.  Bayes factor of model selection validates FLMP , 2001, Psychonomic bulletin & review.

[33]  Refractor Vision , 2000, The Lancet.

[34]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[35]  W. Geisler Ideal Observer Analysis , 2002 .

[36]  Alexandre Pouget,et al.  A computational perspective on the neural basis of multisensory spatial representations , 2002, Nature Reviews Neuroscience.

[37]  Robert A Jacobs,et al.  Bayesian integration of visual and auditory signals for spatial localization. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[38]  S. Gepshtein,et al.  Viewing Geometry Determines How Vision and Haptics Combine in Size Perception , 2003, Current Biology.

[39]  P. Bertelson,et al.  Multisensory integration, perception and ecological validity , 2003, Trends in Cognitive Sciences.

[40]  D. Burr,et al.  The Ventriloquist Effect Results from Near-Optimal Bimodal Integration , 2004, Current Biology.

[41]  E. Todorov Optimality principles in sensorimotor control , 2004, Nature Neuroscience.

[42]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.

[43]  M. Murray,et al.  The role of multisensory memories in unisensory object discrimination. , 2005, Brain research. Cognitive brain research.

[44]  M. Honda,et al.  Behavioral / Systems / Cognitive Functionally Segregated Neural Substrates for Arbitrary Audiovisual Paired-Association Learning , 2005 .

[45]  M. Sams,et al.  Primary auditory cortex activation by visual speech: an fMRI study at 3 T , 2005, Neuroreport.

[46]  Aaron R. Seitz,et al.  Sound Facilitates Visual Learning , 2006, Current Biology.

[47]  T. Griffiths,et al.  Modeling individual differences using Dirichlet processes , 2006 .

[48]  A. Giraud,et al.  Implicit Multisensory Associations Influence Voice Recognition , 2006, PLoS biology.

[49]  H. Bülthoff,et al.  Multimodal similarity and categorization of novel, three-dimensional objects , 2007, Neuropsychologia.

[50]  Thomas L. Griffiths,et al.  The nested Chinese restaurant process and Bayesian inference of topic hierarchies , 2007 .

[51]  Richard E. Neapolitan,et al.  Learning Bayesian networks , 2007, KDD '07.

[52]  S. Lacey,et al.  Vision and Touch: Multiple or Multisensory Representations of Objects? , 2007, Perception.

[53]  Ron Sun,et al.  The Cambridge Handbook of Computational Psychology , 2008 .

[54]  Charles Kemp,et al.  Bayesian models of cognition , 2008 .

[55]  Aaron R. Seitz,et al.  Benefits of multisensory learning , 2008, Trends in Cognitive Sciences.

[56]  W. Richards,et al.  Perception as Bayesian Inference , 2008 .

[57]  David R. Wozny,et al.  Human trimodal perception follows optimal statistical inference. , 2008, Journal of vision.

[58]  T. Stanford,et al.  A neural network model of multisensory integration also accounts for unisensory integration in superior colliculus , 2008, Brain Research.

[59]  Nick Chater,et al.  The probabilistic mind , 2008 .

[60]  Thomas L. Griffiths,et al.  Analyzing human feature learning as nonparametric Bayesian inference , 2008, NIPS.

[61]  Thomas L. Griffiths,et al.  Latent Features in Similarity Judgments: A Nonparametric Bayesian Approach , 2008, Neural Computation.

[62]  N. Chater,et al.  The probabilistic mind: prospects for Bayesian cognitive science , 2008 .

[63]  Sunil Arya,et al.  Space-time tradeoffs for approximate nearest neighbor searching , 2009, JACM.

[64]  C. Koch,et al.  Explicit Encoding of Multimodal Percepts by Single Neurons in the Human Brain , 2009, Current Biology.

[65]  Douglas Eck,et al.  An Infinite Factor Model Hierarchy Via a Noisy-Or Mechanism , 2009, NIPS.

[66]  Vincent Hayward,et al.  Motion Aftereffects Transfer between Touch and Vision , 2009, Current Biology.

[67]  Invariant Object Identification A Neural Network Model of , 2010 .

[68]  P. Mamassian,et al.  Multisensory processing in review: from physiology to behaviour. , 2010, Seeing and perceiving.

[69]  S. Lacey,et al.  Are surface properties integrated into visuohaptic object representations? , 2010, The European journal of neuroscience.

[70]  Thomas L. Griffiths,et al.  The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies , 2007, JACM.

[71]  Zoubin Ghahramani,et al.  Dependent Indian Buffet Processes , 2010, AISTATS.

[72]  Ryan P. Adams,et al.  Learning the Structure of Deep Sparse Graphical Models , 2009, AISTATS.

[73]  Christopher R Fetsch,et al.  Visual–vestibular cue integration for heading perception: applications of optimal cue integration theory , 2010, The European journal of neuroscience.

[74]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .