Sparse Bump Sonification: A New Tool for Multichannel EEG Diagnosis of Mental Disorders; Application to the Detection of the Early Stage of Alzheimer's Disease

This paper investigates the use of sound and music as a means of representing and analyzing multichannel EEG recordings. Specific focus is given to applications in early detection and diagnosis of early stage of Alzheimer's disease. We propose here a novel approach based on multi channel sonification, with a time-frequency representation and sparsification process using bump modeling. The fundamental question explored in this paper is whether clinically valuable information, not available from the conventional graphical EEG representation, might become apparent through an audio representation. Preliminary evaluation of the obtained music score - by sample entropy, number of notes, and synchronous activity - incurs promising results.

[1]  J. Richman,et al.  Physiological time-series analysis using approximate entropy and sample entropy. , 2000, American journal of physiology. Heart and circulatory physiology.

[2]  F. Vialatte Modélisation en bosses pour l'analyse de motifs oscillatoires reproductibles dans l'activité de populations neuronales: applications à l'apprentissage olfactif chez l'animal et à la détection précoce de la maladie d'Alzheimer , 2005 .

[3]  R. Ihl,et al.  EEG and the Test for the Early Detection of Dementia with Discrimination from Depression (TE4D): a validation study , 2004, International journal of geriatric psychiatry.

[4]  Eduardo Reck Miranda,et al.  Interfacing the Brain Directly with Musical Systems: On Developing Systems for Making Music with Brain Signals , 2005, Leonardo.

[5]  Allan Kardec Barros,et al.  Auditory Feedback for Brain Computer Interface Management - An EEG Data Sonification Approach , 2006, KES.

[6]  Emil Jovanov,et al.  Acoustic rendering as support for sustained attention during biomedical procedures , 1998 .

[7]  William H. Press,et al.  Numerical recipes in C , 2002 .

[8]  Francesco Rundo,et al.  Fronto-parietal coupling of brain rhythms in mild cognitive impairment: A multicentric EEG study , 2006, Brain Research Bulletin.

[9]  S. Rombouts,et al.  Disturbed fluctuations of resting state EEG synchronization in Alzheimer's disease , 2005, Clinical Neurophysiology.

[10]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[11]  Rémi Gervais,et al.  A machine learning approach to the analysis of time-frequency maps, and its application to neural dynamics , 2007, Neural Networks.

[12]  R. Gervais,et al.  Blind Source Separation and Sparse Bump Modelling of Time Frequency Representation of Eeg Signals: New Tools for Early Detection of Alzheimer's Disease , 2022 .

[13]  W. Shankle,et al.  A new EEG method for estimating cortical neuronal impairment that is sensitive to early stage Alzheimer's disease , 2002, Clinical Neurophysiology.

[14]  Helge Ritter,et al.  SONIFICATIONS FOR EEG DATA ANALYSIS , 2002 .

[15]  S. Guzzetti,et al.  Physiological time-series analysis using approximate entropy and sample entropy , 2000 .

[16]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[17]  Gerold Baier,et al.  The Sonification of Rhythms in Human Electroencephalogram , 2004, ICAD.

[18]  G. Adler,et al.  EEG coherence in Alzheimer’s dementia , 2003, Journal of Neural Transmission.

[19]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .