3D Hand Tracking in a Stochastic Approximation Setting

This paper introduces a hand tracking system with a theoretical proof of convergence. The tracking system follows a model-based approach and uses image-based cues, namely silhouettes and colour constancy. We show that, with the exception of a small set of parameter configurations, the cost function of our tracker has a well-behaved unique minimum. The convergence proof for the tracker relies on the convergence theory in stochastic approximation. We demonstrate that our tracker meets the sufficient conditions for stochastic approximation to hold locally. Experimental results on synthetic images generated from real hand motions show the feasibility of this approach.

[1]  Michael I. Mandel,et al.  Visual Hand Tracking Using Nonparametric Belief Propagation , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[2]  Tieniu Tan,et al.  Recent developments in human motion analysis , 2003, Pattern Recognit..

[3]  H. Robbins A Stochastic Approximation Method , 2007 .

[4]  Hans-Peter Seidel,et al.  Combining 3D flow fields with silhouette-based human motion capture for immersive video , 2004, Graph. Model..

[5]  John P. Lewis,et al.  Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation , 2000, SIGGRAPH.

[6]  Shan Lu,et al.  Using multiple cues for hand tracking and model refinement , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[7]  Nicol N. Schraudolph,et al.  Fast Curvature Matrix-Vector Products for Second-Order Gradient Descent , 2002, Neural Computation.

[8]  Hans-Peter Seidel,et al.  Free-viewpoint video of human actors , 2003, ACM Trans. Graph..

[9]  Michael J. Black,et al.  A Quantitative Evaluation of Video-based 3D Person Tracking , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[10]  Cristian Sminchisescu,et al.  Covariance scaled sampling for monocular 3D body tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[11]  Nicol N. Schraudolph,et al.  Stochastic optimisation for high-dimensional tracking in dense range maps , 2005 .

[12]  Mircea Nicolescu,et al.  A Review on Vision-Based Full DOF Hand Motion Estimation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[13]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[14]  Nicol N. Schraudolph Local Gain Adaptation in Stochastic Gradient Descent , 1999 .

[15]  J. Blum Multidimensional Stochastic Approximation Methods , 1954 .

[16]  Rama Chellappa,et al.  Multi-camera Tracking of Articulated Human Motion Using Motion and Shape Cues , 2006, ACCV.

[17]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001, Künstliche Intell..

[18]  Luc Van Gool,et al.  Markerless tracking of complex human motions from multiple views , 2006, Comput. Vis. Image Underst..