Estimating fractal dimension

Fractals arise from a variety of sources and have been observed in nature and on computer screens. One of the exceptional characteristics of fractals is that they can be described by a noninteger dimension. The geometry of fractals and the mathematics of fractal dimension have provided useful tools for a variety of scientific disciplines, among which is chaos. Chaotic dynamical systems exhibit trajectories in their phase space that converge to a strange attractor. The fractal dimension of this attractor counts the effective number of degrees of freedom in the dynamical system and thus quantifies its complexity. In recent years, numerical methods have been developed for estimating the dimension directly from the observed behavior of the physical system. The purpose of this paper is to survey briefly the kinds of fractals that appear in scientific research, to discuss the application of fractals to nonlinear dynamical systems, and finally to review more comprehensively the state of the art in numerical methods for estimating the fractal dimension of a strange attractor.

[1]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[2]  P. Grassberger,et al.  Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .

[3]  Bessis,et al.  Mellin transforms of correlation integrals and generalized dimension of strange sets. , 1987, Physical review. A, General physics.

[4]  Grebogi,et al.  Unstable periodic orbits and the dimensions of multifractal chaotic attractors. , 1988, Physical review. A, General physics.

[5]  Francis C. Moon,et al.  An optical technique for measuring fractal dimensions of planar poincaré maps , 1986 .

[6]  B. Mandelbrot,et al.  Geometric Implementation of Hypercubic Lattices with Noninteger Dimensionality by Use of Low Lacunarity Fractal Lattices , 1983 .

[7]  M. Möller,et al.  Errors from digitizing and noise in estimating attractor dimensions , 1989 .

[8]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[9]  Voges,et al.  Global scaling properties of a chaotic attractor reconstructed from experimental data. , 1988, Physical review. A, General physics.

[10]  Theiler,et al.  Spurious dimension from correlation algorithms applied to limited time-series data. , 1986, Physical review. A, General physics.

[11]  R. Mañé,et al.  On the dimension of the compact invariant sets of certain non-linear maps , 1981 .

[12]  R. Jensen,et al.  Direct determination of the f(α) singularity spectrum , 1989 .

[13]  S. Zucker,et al.  Evaluating the fractal dimension of profiles. , 1989, Physical review. A, General physics.

[14]  Jensen,et al.  Time ordering and the thermodynamics of strange sets: Theory and experimental tests. , 1986, Physical review letters.

[15]  F. Hausdorff Dimension und äußeres Maß , 1918 .

[16]  Jensen,et al.  Order parameter, symmetry breaking, and phase transitions in the description of multifractal sets. , 1987, Physical review. A, General physics.

[17]  A. Vulpiani,et al.  Anomalous scaling laws in multifractal objects , 1987 .

[18]  G. Broggi,et al.  Evaluation of dimensions and entropies of chaotic systems , 1988 .

[19]  Jensen,et al.  Scaling structure and thermodynamics of strange sets. , 1987, Physical review. A, General physics.

[20]  Agnessa Babloyantz,et al.  A comparative study of the experimental quantification of deterministic chaos , 1988 .

[21]  P. Grassberger,et al.  14. Estimating the fractal dimensions and entropies of strange attractors , 1986 .

[22]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[23]  Peter H. Richter,et al.  The Beauty of Fractals , 1988, 1988.

[24]  Schuster,et al.  Generalized dimensions and entropies from a measured time series. , 1987, Physical review. A, General physics.

[25]  A. Namajūnas,et al.  An electronic technique for measuring phase space dimension from chaotic time series , 1988 .

[26]  Schwartz,et al.  Singular-value decomposition and the Grassberger-Procaccia algorithm. , 1988, Physical review. A, General physics.

[27]  Schram,et al.  Generalized dimensions from near-neighbor information. , 1988, Physical review. A, General physics.

[28]  Leonard A. Smith,et al.  Lacunarity and intermittency in fluid turbulence , 1986 .

[29]  Po‐zen Wong,et al.  The Statistical Physics of Sedimentary Rock , 1988 .

[30]  Christopher K. R. T. Jones,et al.  Global dynamical behavior of the optical field in a ring cavity , 1985 .

[31]  Itamar Procaccia,et al.  Phase transitions in the thermodynamic formalism of multifractals. , 1987 .

[32]  Tél,et al.  Dynamical fractal properties of one-dimensional maps. , 1987, Physical review. A, General physics.

[33]  Andrew M. Fraser,et al.  Information and entropy in strange attractors , 1989, IEEE Trans. Inf. Theory.

[34]  S. Ellner Estimating attractor dimensions from limited data: A new method, with error estimates , 1988 .

[35]  K. Pawelzik,et al.  Optimal Embeddings of Chaotic Attractors from Topological Considerations , 1991 .

[36]  L. Chua,et al.  Chaos: A tutorial for engineers , 1987, Proceedings of the IEEE.

[37]  Biman Das,et al.  Definitions Of Chaos And Measuring Its Characteristics , 1986, Other Conferences.

[38]  John Guckenheimer,et al.  Dimension measurements for geostrophic turbulence , 1983 .

[39]  Mark J. McGuinness,et al.  A computation of the limit capacity of the Lorenz attractor , 1985 .

[40]  Keinosuke Fukunaga,et al.  An Algorithm for Finding Intrinsic Dimensionality of Data , 1971, IEEE Transactions on Computers.

[41]  P. Cvitanović Universality in Chaos , 1989 .

[42]  Libchaber,et al.  f( alpha ) curves: Experimental results. , 1988, Physical review. A, General physics.

[43]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[44]  L. Pietronero,et al.  Fractal Dimension of Dielectric Breakdown , 1984 .

[45]  Peter Grassberger,et al.  Generalizations of the Hausdorff dimension of fractal measures , 1985 .

[46]  Auerbach,et al.  Exploring chaotic motion through periodic orbits. , 1987, Physical review letters.

[47]  Mark Kot,et al.  Multidimensional trees, range searching, and a correlation dimension algorithm of reduced complexity , 1989 .

[48]  G. P. King,et al.  Topological dimension and local coordinates from time series data , 1987 .

[49]  Z. Alexandrowicz,et al.  Fractal Dimension of Strange Attractors from Radius versus Size of Arbitrary Clusters , 1983 .

[50]  Peter W. Milonni,et al.  Dimensions and entropies in chaotic systems: Quantification of complex behavior , 1986 .

[51]  Cohen,et al.  Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems. , 1985, Physical review. A, General physics.

[52]  James Theiler,et al.  Lacunarity in a best estimator of fractal dimension , 1988 .

[53]  H. Stanley,et al.  Fractal growth viscous fingers: quantitative characterization of a fluid instability phenomenon , 1985, Nature.

[54]  Leo P. Kadanoff,et al.  Fractals: Where's the Physics? , 1986 .

[55]  A. Politi,et al.  Statistical description of chaotic attractors: The dimension function , 1985 .

[56]  Swinney,et al.  Strange attractors in weakly turbulent Couette-Taylor flow. , 1987, Physical review. A, General physics.

[57]  Jensen,et al.  Fractal measures and their singularities: The characterization of strange sets. , 1987, Physical review. A, General physics.

[58]  Theiler Statistical precision of dimension estimators. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[59]  J. Doyne Farmer,et al.  Exploiting Chaos to Predict the Future and Reduce Noise , 1989 .

[60]  P. F. Meier,et al.  Evaluation of Lyapunov exponents and scaling functions from time series , 1988 .

[61]  B. Mandelbrot,et al.  Phase transitions on fractals. III. Infinitely ramified lattices , 1984 .

[62]  K. Ikeda,et al.  Study of a high-dimensional chaotic attractor , 1986 .

[63]  D. Robertson,et al.  Studying the earth by very-long-baseline interferometry , 1986 .

[64]  D'arcy W. Thompson On Growth and Form , 1945 .

[65]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[66]  Gottfried Mayer-Kress,et al.  APPLICATION OF DIMENSION ALGORITHMS TO EXPERIMENTAL CHAOS , 1987 .

[67]  Franaszek Optimized algorithm for the calculation of correlation integrals. , 1989, Physical review. A, General physics.

[68]  J. D. Farmer,et al.  ON DETERMINING THE DIMENSION OF CHAOTIC FLOWS , 1981 .

[69]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[70]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[71]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[72]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[73]  H. Stanley,et al.  On growth and form : fractal and non-fractal patterns in physics , 1986 .

[74]  Yorke,et al.  Noise reduction in dynamical systems. , 1988, Physical review. A, General physics.

[75]  Alan J. Hurd Resource Letter FR-1: Fractals , 1988 .

[76]  H. Schuster Deterministic chaos: An introduction , 1984 .

[77]  Harry L. Swinney,et al.  Testing nonlinear dynamics , 1984 .

[78]  Biman Das,et al.  Calculating the dimension of attractors from small data sets , 1986 .

[79]  Lange,et al.  Measuring filtered chaotic signals. , 1988, Physical review. A, General physics.

[80]  A. Provenzale,et al.  Finite correlation dimension for stochastic systems with power-law spectra , 1989 .

[81]  A. Arneodo,et al.  Fractal dimensions and (a) spectrum of the Hnon attractor , 1987 .

[82]  Francis Sullivan,et al.  Efficient Algorithms for Computing Fractal Dimensions , 1986 .

[83]  秦 浩起,et al.  Characterization of Strange Attractor (カオスとその周辺(基研長期研究会報告)) , 1987 .

[84]  Hermann Haken,et al.  Information and Self-Organization: A Macroscopic Approach to Complex Systems , 2010 .

[85]  Grebogi,et al.  Unstable periodic orbits and the dimension of chaotic attractors. , 1987, Physical review. A, General physics.

[86]  Jensen,et al.  Global universality at the onset of chaos: Results of a forced Rayleigh-Benard experiment. , 1985, Physical review letters.

[87]  J. Yorke,et al.  Dimension of chaotic attractors , 1982 .

[88]  Theiler Efficient algorithm for estimating the correlation dimension from a set of discrete points. , 1987, Physical review. A, General physics.

[89]  P. Grassberger Generalized dimensions of strange attractors , 1983 .

[90]  Antonio Politi,et al.  Intrinsic oscillations in measuring the fractal dimension , 1984 .

[91]  J. Havstad,et al.  Attractor dimension of nonstationary dynamical systems from small data sets. , 1989, Physical review. A, General physics.

[92]  Yasuji Sawada,et al.  Practical Methods of Measuring the Generalized Dimension and the Largest Lyapunov Exponent in High Dimensional Chaotic Systems , 1987 .

[93]  Eckmann,et al.  Fluctuations of dynamical scaling indices in nonlinear systems. , 1986, Physical review. A, General physics.

[94]  M. Barnsley,et al.  Iterated function systems and the global construction of fractals , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[95]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[96]  E. Ott,et al.  Dimension of Strange Attractors , 1980 .

[97]  J. Yorke,et al.  The liapunov dimension of strange attractors , 1983 .

[98]  E. Ott Strange attractors and chaotic motions of dynamical systems , 1981 .

[99]  A. Wolf,et al.  Impracticality of a box-counting algorithm for calculating the dimensionality of strange attractors , 1982 .

[100]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[101]  Hediger,et al.  Fractal dimension and local intrinsic dimension. , 1989, Physical review. A, General physics.

[102]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[103]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[104]  Leonard A. Smith Intrinsic limits on dimension calculations , 1988 .

[105]  P. Grassberger,et al.  Scaling laws for invariant measures on hyperbolic and nonhyperbolic atractors , 1988 .

[106]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[107]  A. Fraser Reconstructing attractors from scalar time series: A comparison of singular system and redundancy criteria , 1989 .

[108]  P. Grassberger Finite sample corrections to entropy and dimension estimates , 1988 .

[109]  James A. Yorke,et al.  Invisible Errors in Dimension Calculations: Geometric and Systematic Effects , 1986 .

[110]  Floris Takens,et al.  On the numerical determination of the dimension of an attractor , 1985 .

[111]  Antanas Cenys,et al.  Estimation of the number of degrees of freedom from chaotic time series , 1988 .

[112]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[113]  Auerbach,et al.  Scaling structure of strange attractors. , 1988, Physical review. A, General physics.

[114]  Procaccia,et al.  Organization of chaos. , 1987, Physical review letters.

[115]  K. Chen,et al.  The physics of fractals , 1989 .

[116]  Anil K. Jain,et al.  An Intrinsic Dimensionality Estimator from Near-Neighbor Information , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[117]  Mees,et al.  Singular-value decomposition and embedding dimension. , 1987, Physical review. A, General physics.

[118]  Sarkar Multifractal description of singular measures in dynamical systems. , 1987, Physical review. A, General physics.

[119]  R. Cawley,et al.  Maximum likelihood method for evaluating correlation dimension , 1987 .

[120]  Broggi,et al.  Dimension increase in filtered chaotic signals. , 1988, Physical review letters.

[121]  G. Broggi,et al.  Measurement of the dimension spectrum ƒ(α): Fixed-mass approach , 1988 .

[122]  Cvitanovic,et al.  Topological and metric properties of Hénon-type strange attractors. , 1988, Physical review. A, General physics.

[123]  J. Brickmann B. Mandelbrot: The Fractal Geometry of Nature, Freeman and Co., San Francisco 1982. 460 Seiten, Preis: £ 22,75. , 1985 .

[124]  L. Sander Fractal growth processes , 1986, Nature.

[125]  J. B. Ramsey,et al.  Bias and error bars in dimension calculations and their evaluation in some simple models , 1989 .

[126]  Peter Grassberger,et al.  On the fractal dimension of the Henon attractor , 1983 .

[127]  Westervelt,et al.  Scaling structure of attractors at the transition from quasiperiodicity to chaos in electronic transport in Ge. , 1987, Physical review letters.

[128]  Mogens H. Jensen,et al.  Global universality at the onset of chaos: Results of a forced Rayleigh-Benard experiment. , 1985 .

[129]  P. Grassberger Do climatic attractors exist? , 1986, Nature.

[130]  Badii,et al.  Renyi dimensions from local expansion rates. , 1987, Physical review. A, General physics.

[131]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[132]  J. Theiler Quantifying Chaos: Practical Estimation of the Correlation Dimension. , 1988 .

[133]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[134]  F. Takens Detecting strange attractors in turbulence , 1981 .

[135]  R. L. Somorjai,et al.  Methods for Estimating the Intrinsic Dimsnionality of High-Dimensional Point Sets , 1986 .