Planck 2018 results: V. CMB power spectra and likelihoods

Author(s): Aghanim, N; Akrami, Y; Ashdown, M; Aumont, J; Baccigalupi, C; Ballardini, M; Banday, AJ; Barreiro, RB; Bartolo, N; Basak, S; Benabed, K; Bernard, JP; Bersanelli, M; Bielewicz, P; Bock, JJ; Bond, JR; Borrill, J; Bouchet, FR; Boulanger, F; Bucher, M; Burigana, C; Butler, RC; Calabrese, E; Cardoso, JF; Carron, J; Casaponsa, B; Challinor, A; Chiang, HC; Colombo, LPL; Combet, C; Crill, BP; Cuttaia, F; De Bernardis, P; De Rosa, A; De Zotti, G; Delabrouille, J; Delouis, JM; Di Valentino, E; Diego, JM; Dore, O; Douspis, M; Ducout, A; Dupac, X; Dusini, S; Efstathiou, G; Elsner, F; Enslin, TA; Eriksen, HK; Fantaye, Y; Fernandez-Cobos, R; Finelli, F; Frailis, M; Fraisse, AA; Franceschi, E; Frolov, A; Galeotta, S; Galli, S; Ganga, K; Genova-Santos, RT; Gerbino, M; Ghosh, T; Giraud-Heraud, Y; Gonzalez-Nuevo, J; Gorski, KM; Gratton, S; Gruppuso, A; Gudmundsson, JE; Hamann, J; Handley, W; Hansen, FK; Herranz, D; Hivon, E; Huang, Z; Jaffe, AH; Jones, WC; Keihanen, E; Keskitalo, R; Kiiveri, K; Kim, J; Kisner, TS; Krachmalnicoff, N; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, JM | Abstract: © 2020 EDP Sciences. All rights reserved. We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low (l l 30) and high (l ≥ 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases. With more realistic simulations, and better correction and modelling of systematic effects, we can now make full use of the CMB polarization observed in the High Frequency Instrument (HFI) channels. The low-multipole EE cross-spectra from the 100 GHz and 143 GHz data give a constraint on the λCDM reionization optical-depth parameter τ to better than 15% (in combination with the TT low-l data and the high-l temperature and polarization data), tightening constraints on all parameters with posterior distributions correlated with τ. We also update the weaker constraint on τ from the joint TEB likelihood using the Low Frequency Instrument (LFI) channels, which was used in 2015 as part of our baseline analysis. At higher multipoles, the CMB temperature spectrum and likelihood are very similar to previous releases. A better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (i.e., the polarization efficiencies) allow us to make full use of polarization spectra, improving the λCDM constraints on the parameters θMC, ωc, ωb, and H0 by more than 30%, and ns by more than 20% compared to TT-only constraints. Extensive tests on the robustness of the modelling of the polarization data demonstrate good consistency, with some residual modelling uncertainties. At high multipoles, we are now limited mainly by the accuracy of the polarization efficiency modelling. Using our various tests, simulations, and comparison between different high-multipole likelihood implementations, we estimate the consistency of the results to be better than the 0.5σ level on the λCDM parameters, as well as classical single-parameter extensions for the joint likelihood (to be compared to the 0.3σ levels we achieved in 2015 for the temperature data alone on λCDM only). Minor curiosities already present in the previous releases remain, such as the differences between the best-fit λCDM parameters for the l l 800 and l g 800 ranges of the power spectrum, or the preference for more smoothing of the power-spectrum peaks than predicted in λCDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations.

R. B. Barreiro | J. Cardoso | H. Kurki-Suonio | P. Lilje | N. Aghanim | C. Baccigalupi | K. Benabed | M. Kunz | G. Morgante | M. Douspis | J. Delouis | M. Frailis | A. Zacchei | A. Melchiorri | V. Pettorino | T. Ensslin | K. Gorski | E. Hivon | A. Banday | F. Hansen | M. Reinecke | A. Lewis | A. Challinor | A. Lasenby | B. Wandelt | J. Borrill | P. Bernardis | A. Jaffe | J. Bond | B. Crill | K. Ganga | W. Jones | F. Piacentini | G. Efstathiou | J. Diego | A. Moss | H. Peiris | J. McEwen | Y. Fantaye | M. Ashdown | C. Lawrence | T. Kisner | H. Eriksen | H. Nørgaard-Nielsen | J. Aumont | J. Bernard | M. Bersanelli | P. Bielewicz | M. Bucher | C. Burigana | R. C. Butler | H. Chiang | L. Colombo | F. Cuttaia | G. Zotti | J. Delabrouille | X. Dupac | F. Finelli | A. Fraisse | E. Franceschi | S. Galeotta | S. Gratton | A. Gruppuso | D. Herranz | R. Keskitalo | G. Lagache | J. Lamarre | M. Jeune | M. Liguori | P. Lubin | D. Maino | N. Mandolesi | A. Marcos-Caballero | M. Maris | P. Meinhold | A. Mennella | M. Migliaccio | M. Miville-Deschênes | A. Moneti | L. Montier | P. Natoli | L. Pagano | D. Paoletti | B. Partridge | G. Patanchon | F. Perrotta | G. Polenta | J. Puget | J. Rachen | M. Remazeilles | A. Renzi | G. Rocha | C. Rosset | G. Roudier | M. Sandri | E. Shellard | L. Spencer | R. Sunyaev | A. Suur-Uski | J. Tauber | D. Tavagnacco | M. Tomasi | J. Valiviita | B. Tent | P. Vielva | F. Villa | N. Vittorio | I. Wehus | A. Zonca | E. Calabrese | F. Elsner | S. Galli | J. Gudmundsson | J. Hamann | M. Lattanzi | M. Millea | M. Savelainen | N. Bartolo | C. Combet | E. D. Valentino | A. Ducout | M. Gerbino | T. Ghosh | Y. Giraud-Héraud | J. González-Nuevo | F. Levrier | M. López-Caniego | J. Macías-Pérez | G. Maggio | A. Mangilli | J. Rubiño-Martín | L. Salvati | T. Trombetti | E. Keihänen | K. Kiiveri | V. Lindholm | A. Rosa | S. Dusini | N. Mauri | C. Sirignano | G. Sirri | M. Tenti | Y. Akrami | Yin-Zhe Ma | S. Matarrese | M. Ballardini | S. Basak | B. Casaponsa | R. Fernández-Cobos | A. Frolov | N. Krachmalnicoff | D. Molinari | B. Ruiz-Granados | J. Carron | Zhiqi Huang | R. Génova-Santos | F. Boulanger | Jae-Young Kim | E. Martínez-González | L. Toffolatti | O. Doré | F. Bouchet | W. Handley | F. Lévrier | J. Bock | D. Scott | M. Lilley | P. Martin | M. Savelainen | D. Scott | A. D. Rosa

[1]  M. Lueker,et al.  A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH TWO YEARS OF SOUTH POLE TELESCOPE OBSERVATIONS , 2011, 1111.0932.

[2]  G. W. Pratt,et al.  Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.

[3]  A. Challinor,et al.  Measurement of CIB power spectra over large sky areas from Planck HFI maps , 2016, 1609.08942.

[4]  R. B. Barreiro,et al.  Planck 2018 results. IX. Constraints on primordial non-Gaussianity , 2019, 1905.05697.

[5]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[6]  G. W. Pratt,et al.  Astronomy & Astrophysics manuscript no. HFI˙Transfer˙Function˙and˙Beams c ○ ESO 2013 , 2013 .

[7]  G. Hinshaw,et al.  QUANTIFYING DISCORDANCE IN THE 2015 PLANCK CMB SPECTRUM , 2015, 1511.00055.

[8]  R. B. Barreiro,et al.  Planck intermediate results. XLI. A map of lensing-induced B-modes , 2015, 1512.02882.

[9]  Max Tegmark,et al.  How to measure CMB polarization power spectra without losing information , 2000, astro-ph/0012120.

[10]  G. W. Pratt,et al.  Planck 2015 results Special feature Planck 2015 results XII . Full focal plane simulations , 2016 .

[11]  H. Trac,et al.  TEMPLATES FOR THE SUNYAEV–ZEL’DOVICH ANGULAR POWER SPECTRUM , 2010, 1006.2828.

[12]  G. Efstathiou,et al.  A Simple Empirically Motivated Template for the Unresolved Thermal Sunyaev-Zeldovich Effect , 2011, 1106.3208.

[13]  J. Delouis,et al.  SRoll2: an improved mapmaking approach to reduce large-scale systematic effects in the Planck High Frequency Instrument legacy maps , 2019, Astronomy & Astrophysics.

[14]  F. Finelli,et al.  New estimates of the CMB angular power spectra from the WMAP 5 year low-resolution data , 2009, 0904.0789.

[15]  P. Ade,et al.  Planck pre-launch status: High Frequency Instrument polarization calibration , 2010, 1004.2595.

[16]  G. W. Pratt,et al.  Planck 2013 results. XV. CMB power spectra and likelihood , 2013, 1303.5075.

[17]  J. Aumont,et al.  Planck2018 results , 2013, Astronomy & Astrophysics.

[18]  U. Seljak,et al.  An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.

[19]  G. W. Pratt,et al.  Planck 2015 results Special feature Planck 2015 results VIII . High Frequency Instrument data processing : Calibration and maps , 2016 .

[20]  C. A. Oxborrow,et al.  Planck2013 results. VI. High Frequency Instrument data processing , 2013, Astronomy & Astrophysics.

[21]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[22]  C. A. Oxborrow,et al.  Planck 2015 results. IX. Diffuse component separation: CMB maps , 2015, 1502.05956.

[23]  E. Hivon,et al.  Fast estimation of polarization power spectra using correlation functions , 2003, astro-ph/0303414.

[24]  P. Natoli,et al.  Fast Spherical Harmonic Analysis: A Quick Algorithm for Generating and/or InvertingFull-Sky, High-Resolution Cosmic Microwave Background Anisotropy Maps , 1997, astro-ph/9703084.

[25]  C. A. Oxborrow,et al.  Planck 2015 results. XV. Gravitational lensing , 2015, 1502.01591.

[26]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[27]  Antony Lewis,et al.  Likelihood Analysis of CMB Temperature and Polarization Power Spectra , 2008, 0801.0554.

[28]  G. W. Pratt,et al.  Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization , 2014, 1405.0874.

[29]  J. Delouis,et al.  Reionization optical depth determination from Planck HFI data with ten percent accuracy , 2019, Astronomy & Astrophysics.

[30]  J. Cardoso,et al.  CMB Polarization can constrain cosmology better than CMB temperature , 2014, 1403.5271.

[31]  E. Hivon,et al.  QuickPol: Fast calculation of effective beam matrices for CMB polarization , 2016, 1608.08833.

[32]  C. A. Oxborrow,et al.  Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth , 2016, 1605.02985.

[33]  H. Kurki-Suonio,et al.  Residual noise covariance for Planck low-resolution data analysis , 2009, 0906.0175.

[34]  XSPECT, estimation of the angular power spectrum by computing cross-power spectra with analytical error bars , 2004, astro-ph/0405575.

[35]  Cora Dvorkin,et al.  Inflationary Features and Shifts in Cosmological Parameters From Planck 2015 Data , 2017 .

[36]  G. Efstathiou Hybrid estimation of cosmic microwave background polarization power spectra , 2006 .

[37]  C. A. Oxborrow,et al.  Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove , 2013, 1303.5087.

[38]  C. A. Oxborrow,et al.  Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation , 2013, 1309.0382.

[39]  Daniel Grin,et al.  Do baryons trace dark matter in the early universe? , 2011, Physical review letters.

[40]  A. Moss,et al.  Tilted physics: A cosmologically dipole-modulated sky , 2010, 1011.2990.

[41]  J. Dunkley,et al.  Modelling the correlation between the thermal Sunyaev Zel'dovich effect and the cosmic infrared background , 2012, 1204.5927.

[42]  W. A. Fendt,et al.  Pico: Parameters for the Impatient Cosmologist , 2006, astro-ph/0606709.

[43]  B. Wandelt,et al.  Likelihood, Fisher information, and systematics of cosmic microwave background experiments , 2012, 1205.0810.

[44]  R. B. Barreiro,et al.  Planck2018 results , 2020, Astronomy & Astrophysics.

[45]  Hybrid Estimation of CMB Polarization Power Spectra , 2006, astro-ph/0601107.

[46]  Peter A. R. Ade,et al.  The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters , 2016, Journal of Cosmology and Astroparticle Physics.

[47]  Edward J. Wollack,et al.  Cosmological parameters from pre-planck cosmic microwave background measurements , 2013 .

[48]  M. Halpern,et al.  The Atacama Cosmology Telescope: Likelihood for Small-Scale CMB Data , 2013, 1301.0776.

[49]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[50]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[51]  Adrian T. Lee,et al.  Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data , 2017, 1707.09353.

[52]  R. B. Barreiro,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[53]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[54]  M. Kamionkowski,et al.  Effect of aberration on partial-sky measurements of the cosmic microwave background temperature power spectrum , 2013, 1309.2285.

[55]  G. W. Pratt,et al.  Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.

[56]  J. Valiviita Power Spectra Based Planck Constraints on Compensated Isocurvature, and Forecasts for LiteBIRD and CORE Space Missions , 2017, 1701.07039.

[57]  Y. Longval,et al.  Planck pre-launch status: HFI beam expectations from the optical optimisation of the focal plane , 2010 .

[58]  Olivier Dor'e,et al.  Compensated isocurvature perturbations and the cosmic microwave background , 2011, 1107.5047.

[59]  G. Efstathiou Myths and truths concerning estimation of power spectra: the case for a hybrid estimator , 2003 .

[60]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[61]  W. White,et al.  A CMB polarization primer , 1997 .

[62]  Albert Stebbins,et al.  Statistics of cosmic microwave background polarization , 1997 .

[63]  J. Cardoso,et al.  TEASING: a fast and accurate approximation for the low multipole likelihood of the cosmic microwave background temperature , 2009, 0901.4537.

[64]  H. K. Eriksen,et al.  COSMIC MICROWAVE BACKGROUND LIKELIHOOD APPROXIMATION BY A GAUSSIANIZED BLACKWELL–RAO ESTIMATOR , 2008, 0809.4624.

[65]  K. Gorski,et al.  Cosmological parameter constraints as derived from the Wilkinson Microwave Anisotropy Probe data via Gibbs sampling and the Blackwell-Rao estimator , 2004, astro-ph/0411737.

[66]  C. A. Oxborrow,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[67]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[68]  F. Finelli,et al.  WMAP 7 year constraints on CPT violation from large angle CMB anisotropies , 2011, 1107.5548.

[69]  J. Aumont,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[70]  C. A. Oxborrow,et al.  Planck intermediate results. LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters , 2016, 1608.02487.

[71]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[72]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[73]  G. W. Pratt,et al.  Planck 2015 results - X. Diffuse component separation: Foreground maps , 2015, 1502.01588.

[74]  Max Tegmark,et al.  A method for extracting maximum resolution power spectra from microwave sky maps , 1994, astro-ph/9412064.

[75]  H. K. Eriksen,et al.  Joint Bayesian Component Separation and CMB Power Spectrum Estimation , 2007, 0709.1058.