What and where: A Bayesian inference theory of attention

[1]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[2]  Shimon Ullman,et al.  Cortical Circuitry Implementing Graphical Models , 2009, Neural Computation.

[3]  Wolfgang Maass,et al.  Belief Propagation in Networks of Spiking Neurons , 2009, Neural Computation.

[4]  Krista A. Ehinger,et al.  Modelling search for people in 900 scenes: A combined source model of eye guidance , 2009 .

[5]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[6]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[8]  Shimon Ullman,et al.  Image interpretation by a single bottom-up top-down cycle , 2008, Proceedings of the National Academy of Sciences.

[9]  L. Zhaoping Attention capture by eye of origin singletons even without awareness--a hallmark of a bottom-up saliency map in the primary visual cortex. , 2008, Journal of vision.

[10]  Tim K Marks,et al.  SUN: A Bayesian framework for saliency using natural statistics. , 2008, Journal of vision.

[11]  Dileep George,et al.  How the brain might work: a hierarchical and temporal model for learning and recognition , 2008 .

[12]  Sophie Denève,et al.  Bayesian Spiking Neurons I: Inference , 2008, Neural Computation.

[13]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[14]  Nuno Vasconcelos,et al.  Bottom-up saliency is a discriminant process , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[15]  Geoffrey E. Hinton Learning multiple layers of representation , 2007, Trends in Cognitive Sciences.

[16]  Joseph F. Murray,et al.  Visual Recognition and Inference Using Dynamic Overcomplete Sparse Learning , 2007, Neural Computation.

[17]  Laurent Itti,et al.  Beyond bottom-up: Incorporating task-dependent influences into a computational model of spatial attention , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Marc'Aurelio Ranzato,et al.  Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Alexandre Pouget,et al.  Exact Inferences in a Neural Implementation of a Hidden Markov Model , 2007, Neural Computation.

[20]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[21]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Jeremy M. Wolfe,et al.  Guided Search 4.0: Current Progress With a Model of Visual Search , 2007, Integrated Models of Cognitive Systems.

[23]  George E. Monahan,et al.  A Survey of Partially Observable Markov Decision Processes: Theory, Models, and Algorithms , 2007 .

[24]  John F. Kalaska,et al.  Computational neuroscience : theoretical insights into brain function , 2007 .

[25]  Antonio Torralba,et al.  Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. , 2006, Psychological review.

[26]  L. Zhaoping,et al.  A theory of a saliency map in primary visual cortex (V1) tested by psychophysics of colour–orientation interference in texture segmentation , 2006 .

[27]  Laurent Itti,et al.  An Integrated Model of Top-Down and Bottom-Up Attention for Optimizing Detection Speed , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[28]  David G. Lowe,et al.  Multiclass Object Recognition with Sparse, Localized Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[29]  J. Maunsell,et al.  Feature-based attention in visual cortex , 2006, Trends in Neurosciences.

[30]  Stanley M. Bileschi,et al.  Street Scenes: towards scene understanding in still images , 2006 .

[31]  D. George,et al.  A hierarchical Bayesian model of invariant pattern recognition in the visual cortex , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[32]  Thomas Serre,et al.  A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex , 2005 .

[33]  John K. Tsotsos,et al.  Saliency Based on Information Maximization , 2005, NIPS.

[34]  Rajesh P. N. Rao,et al.  Bayesian Inference and Attentional Modulation in the Visual Cortex Correspondence and Requests for Reprints to Rajesh , 2005 .

[35]  Antonio Torralba,et al.  Learning hierarchical models of scenes, objects, and parts , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[36]  Thomas Dean,et al.  A Computational Model of the Cerebral Cortex , 2005, AAAI.

[37]  Daniel P. Huttenlocher,et al.  Spatial priors for part-based recognition using statistical models , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[38]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[39]  Yuanzhen Li,et al.  Feature congestion: a measure of display clutter , 2005, CHI.

[40]  F. Fleuret Fast Binary Feature Selection with Conditional Mutual Information , 2004, J. Mach. Learn. Res..

[41]  Peter Dayan,et al.  Inference, Attention, and Decision in a Bayesian Neural Architecture , 2004, NIPS.

[42]  A. Torralba,et al.  Sharing features: efficient boosting procedures for multiclass object detection , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[43]  Minami Ito,et al.  Representation of Angles Embedded within Contour Stimuli in Area V2 of Macaque Monkeys , 2004, The Journal of Neuroscience.

[44]  E. Rolls,et al.  A Neurodynamical cortical model of visual attention and invariant object recognition , 2004, Vision Research.

[45]  A. Yuille,et al.  Object perception as Bayesian inference. , 2004, Annual review of psychology.

[46]  Antonio Torralba,et al.  Contextual Priming for Object Detection , 2003, International Journal of Computer Vision.

[47]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[48]  Rajesh P. N. Rao Bayesian Computation in Recurrent Neural Circuits , 2004, Neural Computation.

[49]  D. Mumford On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[50]  Daniel P. Huttenlocher,et al.  Pictorial Structures for Object Recognition , 2004, International Journal of Computer Vision.

[51]  Pietro Perona,et al.  Is bottom-up attention useful for object recognition? , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[52]  Antonio Torralba,et al.  Using the Forest to See the Trees: A Graphical Model Relating Features, Objects, and Scenes , 2003, NIPS.

[53]  Antonio Torralba,et al.  Top-down control of visual attention in object detection , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[54]  Jay Hegdé,et al.  How Selective Are V1 Cells for Pop-Out Stimuli? , 2003, The Journal of Neuroscience.

[55]  Karl J. Friston Learning and inference in the brain , 2003, Neural Networks.

[56]  Y. Amit,et al.  An integrated network for invariant visual detection and recognition , 2003, Vision Research.

[57]  Antonio Torralba,et al.  Modeling global scene factors in attention. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[58]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[59]  Heiko Wersing,et al.  Learning Optimized Features for Hierarchical Models of Invariant Object Recognition , 2003, Neural Computation.

[60]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[61]  Daniel Kersten,et al.  Bayesian models of object perception , 2003, Current Opinion in Neurobiology.

[62]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[63]  Simon J. Thorpe,et al.  Ultra-Rapid Scene Categorization with a Wave of Spikes , 2002, Biologically Motivated Computer Vision.

[64]  S. Treue,et al.  Attentional Modulation Strength in Cortical Area MT Depends on Stimulus Contrast , 2002, Neuron.

[65]  Michel Vidal-Naquet,et al.  Visual features of intermediate complexity and their use in classification , 2002, Nature Neuroscience.

[66]  Edward H. Adelson,et al.  Motion illusions as optimal percepts , 2002, Nature Neuroscience.

[67]  Rajesh P. N. Rao,et al.  Probabilistic Models of the Brain: Perception and Neural Function , 2002 .

[68]  M. Tarr,et al.  Visual Object Recognition , 1996, ISTCS.

[69]  C. Connor,et al.  Shape representation in area V4: position-specific tuning for boundary conformation. , 2001, Journal of neurophysiology.

[70]  L. Itti,et al.  A neural model combining attentional orienting to object recognition: preliminary explorations on the interplay between where and what , 2001, 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[71]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[72]  David J. Freedman,et al.  Categorical representation of visual stimuli in the primate prefrontal cortex. , 2001, Science.

[73]  F. van der Velde,et al.  From Knowing What to Knowing Where: Modeling Object-Based Attention with Feedback Disinhibition of Activation , 2001, Journal of Cognitive Neuroscience.

[74]  N. Kanwisher,et al.  Visual attention: Insights from brain imaging , 2000, Nature Reviews Neuroscience.

[75]  R. Zemel,et al.  Information processing with population codes , 2000, Nature Reviews Neuroscience.

[76]  Edmund T. Rolls,et al.  A Model of Invariant Object Recognition in the Visual System: Learning Rules, Activation Functions, Lateral Inhibition, and Information-Based Performance Measures , 2000, Neural Computation.

[77]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[78]  J. Hegdé,et al.  Selectivity for Complex Shapes in Primate Visual Area V2 , 2000, The Journal of Neuroscience.

[79]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[80]  R. Rosenholtz A simple saliency model predicts a number of motion popout phenomena , 1999, Vision Research.

[81]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[82]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[83]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[84]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[85]  R. Zemel,et al.  Statistical models and sensory attention , 1999 .

[86]  S. Grossberg How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. , 1999, Spatial vision.

[87]  Eero P. Simoncelli,et al.  Modeling Surround Suppression in V1 Neurons with a Statistically Derived Normalization Model , 1998, NIPS.

[88]  R. Desimone Visual attention mediated by biased competition in extrastriate visual cortex. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[89]  Alexandre Pouget,et al.  Probabilistic Interpretation of Population Codes , 1996, Neural Computation.

[90]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[91]  John K. Tsotsos Limited Capacity of Any Realizable Perceptual System Is a Sufficient Reason for Attentive Behavior , 1997, Consciousness and Cognition.

[92]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[93]  E. Rolls,et al.  INVARIANT FACE AND OBJECT RECOGNITION IN THE VISUAL SYSTEM , 1997, Progress in Neurobiology.

[94]  D. C. Essen,et al.  Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. , 1996, Journal of neurophysiology.

[95]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[96]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[97]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[98]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[99]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[100]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[101]  大西 仁,et al.  Pearl, J. (1988, second printing 1991). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan-Kaufmann. , 1994 .

[102]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[103]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[104]  D. Perrett,et al.  Time course of neural responses discriminating different views of the face and head. , 1992, Journal of neurophysiology.

[105]  D Mumford,et al.  On the computational architecture of the neocortex. II. The role of cortico-cortical loops. , 1992, Biological cybernetics.

[106]  W. Lovejoy A survey of algorithmic methods for partially observed Markov decision processes , 1991 .

[107]  Michael S. Landy,et al.  Nonlinear Model of Neural Responses in Cat Visual Cortex , 1991 .

[108]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[109]  R. Desimone,et al.  Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. , 1987, Journal of neurophysiology.

[110]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[111]  R. Weale Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information. David Marr , 1983 .

[112]  G. Monahan State of the Art—A Survey of Partially Observable Markov Decision Processes: Theory, Models, and Algorithms , 1982 .

[113]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[114]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[115]  Edward J. Sondik,et al.  The Optimal Control of Partially Observable Markov Processes over a Finite Horizon , 1973, Oper. Res..

[116]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[117]  A. L. Yarbus,et al.  Eye Movements and Vision , 1967, Springer US.

[118]  Vision Research , 1961, Nature.

[119]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[120]  J. Deutsch Perception and Communication , 1958, Nature.