Control-theoretic methods for biological networks

Feedback is both a pillar of control theory and a pervasive principle of nature. For this reason, control-theoretic methods are powerful to analyse the dynamic behaviour of biological systems and mathematically explain their properties, as well as to engineer biological systems so that they perform a specific task by design. This paper illustrates the relevance of control-theoretic methods for biological systems. The first part gives an overview of biological control and of the versatile ways in which cells use feedback. By employing control-theoretic methods, the complexity of interlaced feedback loops in the cell can be revealed and explained, and layered feedback loops can be designed in the cell to induce the desired behaviours, such as oscillations, multi-stability and activity regulation. The second part is mainly devoted to modelling uncertainty in biology and understanding the robustness of biological phenomena due to their inherent structure. Important control-theoretic tools used in systems biology are surveyed. The third part is focused on tools for model discrimination in systems biology. A deeper understanding of molecular pathways and feedback loops, as well as qualitative information on biological networks, can be achieved by studying the “dynamic response phenotypes” that appear in temporal responses. Several applications to the analysis of biological systems are showcased.

[1]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[2]  P. Haccou Mathematical Models of Biology , 2022 .

[3]  M. Khammash,et al.  Antithetic Integral Feedback Ensures Robust Perfect Adaptation in Noisy Biomolecular Networks. , 2016, Cell systems.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[6]  Eduardo Sontag,et al.  Fold-change detection and scalar symmetry of sensory input fields , 2010, Proceedings of the National Academy of Sciences.

[7]  D. E. Atkinson,et al.  Biological feedback control at the molecular level. , 1965, Science.

[8]  Eduardo Sontag A technique for determining the signs of sensitivities of steady states in chemical reaction networks. , 2013, IET systems biology.

[9]  Eduardo D. Sontag,et al.  Synchronization of Interconnected Systems With Applications to Biochemical Networks: An Input-Output Approach , 2009, IEEE Transactions on Automatic Control.

[10]  Declan G. Bates,et al.  Feedback Control in Systems Biology , 2011 .

[11]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[12]  Franco Blanchini,et al.  Polyhedral Lyapunov functions structurally ensure global asymptotic stability of dynamical networks iff the Jacobian is non-singular , 2017, Autom..

[13]  H. Kitano Towards a theory of biological robustness , 2007, Molecular systems biology.

[14]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[15]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[16]  David Angeli,et al.  Chemical networks with inflows and outflows: A positive linear differential inclusions approach , 2009, Biotechnology progress.

[17]  Gaetano Zampieri,et al.  Diffeomorphisms with Banach space domains , 1992 .

[18]  Antonis Papachristodoulou,et al.  Advanced Methods and Algorithms for Biological Networks Analysis , 2006, Proceedings of the IEEE.

[19]  Nicole Radde,et al.  Graphical methods for analysing feedback in biological networks – A survey , 2010, Int. J. Syst. Sci..

[20]  Franco Blanchini,et al.  Structurally robust biological networks , 2011, BMC Systems Biology.

[21]  N. Balaban Persistence: mechanisms for triggering and enhancing phenotypic variability. , 2011, Current opinion in genetics & development.

[22]  J. Lei Monotone Dynamical Systems , 2013 .

[23]  Uri Alon,et al.  Response regulator output in bacterial chemotaxis , 1998, The EMBO journal.

[24]  M. Feinberg Chemical reaction network structure and the stability of complex isothermal reactors—II. Multiple steady states for networks of deficiency one , 1988 .

[25]  Eduardo D. Sontag,et al.  Symmetry invariance for adapting biological systems , 2010, SIAM J. Appl. Dyn. Syst..

[26]  Peter Takáč,et al.  Linearly stable subharmonic orbits in strongly monotone time-periodic dynamical systems , 1992 .

[27]  N. Wingreen,et al.  Negative feedback loops involving small regulatory RNAs precisely control the Vibrio harveyi quorum-sensing response. , 2010, Molecular cell.

[28]  Roman Srzednicki,et al.  On rest points of dynamical systems , 1985 .

[29]  E. Groisman,et al.  The biology of the PmrA/PmrB two-component system: the major regulator of lipopolysaccharide modifications. , 2013, Annual review of microbiology.

[30]  Thomas G. Kurtz,et al.  Stochastic Analysis of Biochemical Systems , 2015 .

[31]  Elisabeth Pécou,et al.  The interaction graph structure of mass-action reaction networks , 2011, Journal of Mathematical Biology.

[32]  Alex Groisman,et al.  Incoherent Feedforward Control Governs Adaptation of Activated Ras in a Eukaryotic Chemotaxis Pathway , 2012, Science Signaling.

[33]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[34]  James E Ferrell,et al.  Feedback loops and reciprocal regulation: recurring motifs in the systems biology of the cell cycle. , 2013, Current opinion in cell biology.

[35]  D. Vecchio,et al.  Biomolecular Feedback Systems , 2014 .

[36]  Steven W. Flavell,et al.  A Circuit for Gradient Climbing in C. elegans Chemotaxis. , 2015, Cell reports.

[37]  Franco Blanchini,et al.  Compartmental flow control: Decentralization, robustness and optimality , 2016, Autom..

[38]  Lubomír Bakule,et al.  Decentralized control: An overview , 2008, Annu. Rev. Control..

[39]  Franco Blanchini,et al.  Network-Decentralized Control Strategies for Stabilization , 2015, IEEE Transactions on Automatic Control.

[40]  Franco Blanchini,et al.  Piecewise-linear Lyapunov functions for structural stability of biochemical networks , 2014, Autom..

[41]  Franco Blanchini,et al.  A Structural Classification of Candidate Oscillatory and Multistationary Biochemical Systems , 2014, Bulletin of mathematical biology.

[42]  U. Alon An introduction to systems biology : design principles of biological circuits , 2019 .

[43]  Michael T. Laub,et al.  Regulation of the bacterial cell cycle by an integrated genetic circuit , 2006, Nature.

[44]  David Angeli,et al.  New Approach to the Stability of Chemical Reaction Networks: Piecewise Linear in Rates Lyapunov Functions , 2014, IEEE Transactions on Automatic Control.

[45]  Frédéric Grognard,et al.  Global stability for a model of competition in the chemostat with microbial inputs , 2012 .

[46]  Thorsten Mascher,et al.  Stoichiometry and perturbation studies of the LiaFSR system of Bacillus subtilis , 2013, Molecular microbiology.

[47]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[48]  Eduardo D. Sontag,et al.  Oscillatory stimuli differentiate adapting circuit topologies , 2017, Nature Methods.

[49]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[50]  James E. Ferrell,et al.  A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision , 2007, Nature.

[51]  Eduardo D. Sontag,et al.  Monotone and near-monotone biochemical networks , 2007, Systems and Synthetic Biology.

[52]  David Angeli,et al.  Monotone control systems , 2003, IEEE Trans. Autom. Control..

[53]  Franco Blanchini,et al.  Computing the structural influence matrix for biological systems , 2016, Journal of mathematical biology.

[54]  David Angeli,et al.  Oscillations in I/O Monotone Systems Under Negative Feedback , 2007, IEEE Transactions on Automatic Control.

[55]  Katalin M. Hangos Engineering Model Reduction and Entropy-based Lyapunov Functions in Chemical Reaction Kinetics , 2010, Entropy.

[56]  Shinji Hara,et al.  Coordinated Spatial Pattern Formation in Biomolecular Communication Networks , 2015, IEEE Transactions on Molecular, Biological and Multi-Scale Communications.

[57]  U. Alon,et al.  Robustness in bacterial chemotaxis , 1999, Nature.

[58]  J. Ferrell,et al.  A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision , 2003, Nature.

[59]  M. Feinberg,et al.  Structural Sources of Robustness in Biochemical Reaction Networks , 2010, Science.

[60]  F. Mazenc,et al.  Polytopic Lyapunov functions for the stability analysis of persistence of competing species , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[61]  J. Ferrell,et al.  Tuning the Activation Threshold of a Kinase Network by Nested Feedback Loops , 2009, Science.

[62]  Yu-Jin Jung,et al.  Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Giulia Giordano,et al.  Structural Analysis and Control of Dynamical Networks , 2016 .

[64]  Josef Hofbauer,et al.  An index theorem for dissipative semiflows , 1990 .

[65]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[66]  Alessandro Bertuzzi,et al.  Mathematical modeling of the glucose-insulin system: a review. , 2013, Mathematical biosciences.

[67]  David Angeli,et al.  Remarks on the invalidation of biological models using monotone systems theory , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[68]  M. Khammash,et al.  Calcium homeostasis and parturient hypocalcemia: an integral feedback perspective. , 2002, Journal of theoretical biology.

[69]  H. Freud Mathematical Control Theory , 2016 .

[70]  Kazuyuki Aihara,et al.  Modeling Biomolecular Networks in Cells , 2010 .

[71]  Eduardo A. Groisman,et al.  The Pleiotropic Two-Component Regulatory System PhoP-PhoQ , 2001, Journal of bacteriology.

[72]  Altug Iftar,et al.  A linear programming based decentralized routing controller for congested highways , 1999, Autom..

[73]  A. Oudenaarden,et al.  A Systems-Level Analysis of Perfect Adaptation in Yeast Osmoregulation , 2009, Cell.

[74]  J. Ferrell,et al.  Ultrasensitivity part III: cascades, bistable switches, and oscillators. , 2014, Trends in biochemical sciences.

[75]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[76]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..

[77]  R. Jackson,et al.  General mass action kinetics , 1972 .

[78]  Pratik Datta,et al.  Regulation of Central Metabolism Genes of Mycobacterium tuberculosis by Parallel Feed-Forward Loops Controlled by Sigma Factor E (σE) , 2010, Journal of bacteriology.

[79]  Eduardo D. Sontag,et al.  A Characterization of Scale Invariant Responses in Enzymatic Networks , 2012, PLoS Comput. Biol..

[80]  Yi-Ju Hsieh,et al.  Global regulation by the seven-component Pi signaling system. , 2010, Current opinion in microbiology.

[81]  Roman Stocker,et al.  Response rescaling in bacterial chemotaxis , 2011, Proceedings of the National Academy of Sciences.

[82]  P. Olver Nonlinear Systems , 2013 .

[83]  David Angeli,et al.  A tutorial on Chemical Reaction Networks dynamics , 2009, 2009 European Control Conference (ECC).

[84]  Eliseo Ferrante,et al.  Swarm robotics: a review from the swarm engineering perspective , 2013, Swarm Intelligence.

[85]  J. K. Hale,et al.  Competition for fluctuating nutrient , 1983 .

[86]  Dongwoo Shin,et al.  A Positive Feedback Loop Promotes Transcription Surge That Jump-Starts Salmonella Virulence Circuit , 2006, Science.

[87]  Mario di Bernardo,et al.  Global Entrainment of Transcriptional Systems to Periodic Inputs , 2009, PLoS Comput. Biol..

[88]  V. Isaeva Self-organization in biological systems , 2012, Biology Bulletin.

[89]  Franco Blanchini,et al.  Aggregates of Monotonic Step Response Systems: A Structural Classification , 2018, IEEE Transactions on Control of Network Systems.

[90]  Eduardo Sontag,et al.  Modular cell biology: retroactivity and insulation , 2008, Molecular systems biology.

[91]  Hal L. Smith,et al.  Competitive and Cooperative Systems: A Mini-review , 2003, POSTA.

[92]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[93]  David Richeson,et al.  A fixed point theorem for bounded dynamical systems , 2001 .

[94]  J. Tyson,et al.  Design principles of biochemical oscillators , 2008, Nature Reviews Molecular Cell Biology.

[95]  J. Doyle,et al.  Robust perfect adaptation in bacterial chemotaxis through integral feedback control. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Edward J. Davison,et al.  Decentralized control strategies for dynamic routing , 2002 .

[97]  Eduardo D. Sontag,et al.  Molecular Systems Biology and Control , 2005, Eur. J. Control.

[98]  David Angeli,et al.  Multi-stability in monotone input/output systems , 2003, Syst. Control. Lett..

[99]  Murat Arcak,et al.  Pattern Formation by Lateral Inhibition in Large-Scale Networks of Cells , 2013, IEEE Transactions on Automatic Control.