Perceptual groupings in a self-organizing map of spiking neurons

vii

[1]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[2]  L. C. Katz,et al.  Early development of ocular dominance columns. , 2000, Science.

[3]  Fabrizio Gabbiani,et al.  Principles of spike train analysis , 1996 .

[4]  Risto Miikkulainen,et al.  Lateral Connections In The Visual Cortex Can Self-Organize Cooperatively With Multisize RFs Just As With Ocular Dominance and Orientation Columns , 1996 .

[5]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[6]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[7]  Naoum P. Issa,et al.  The Critical Period for Ocular Dominance Plasticity in the Ferret’s Visual Cortex , 1999, The Journal of Neuroscience.

[8]  M. Sur,et al.  Orientation Maps of Subjective Contours in Visual Cortex , 1996, Science.

[9]  R. Miikkulainen,et al.  Self-Organization, Plasticity, and Low-Level Visual Phenomena in a Laterally Connected Map Model of the Primary Visual Cortex , 1997 .

[10]  G. F. Cooper,et al.  Development of the Brain depends on the Visual Environment , 1970, Nature.

[11]  James M. Bower,et al.  Computational Neuroscience: Trends in Research , 1996 .

[12]  W. Singer,et al.  Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex , 1991, Science.

[13]  H. Tamura,et al.  Development of local horizontal interactions in cat visual cortex studied by cross-correlation analysis. , 1993, Journal of neurophysiology.

[14]  Helge J. Ritter,et al.  The Joint Development of Orientation and Ocular Dominance: Role of Constraints , 1997, Neural Computation.

[15]  Wolfgang Maass,et al.  Spiking Neurons , 1998, NC.

[16]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[17]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[18]  Ronald A. Rensink,et al.  Early completion of occluded objects , 1998, Vision Research.

[19]  Eve Marder,et al.  Activity-dependent regulation of neuronal conductances , 1998 .

[20]  Cornelius Weber,et al.  Self-Organization of Orientation Maps, Lateral Connections, and Dynamic Receptive Fields in the Primary Visual Cortex , 2001, ICANN.

[21]  T. W. Lee,et al.  Chromatic structure of natural scenes. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  C. Spengler,et al.  Contour Segmentation with Recurrent Neural Networks of Pulse-Coding Neurons , 1997, CAIP.

[23]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[24]  A. Burkhalter,et al.  Development of local circuits in human visual cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  Terrence J. Sejnowski,et al.  The Spectral Independent Components of Natural Scenes , 2000, Biologically Motivated Computer Vision.

[26]  K. Nakayama,et al.  Enhanced Perception of Illusory Contours in the Lower Versus Upper Visual Hemifields , 1996, Science.

[27]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  Wulfram Gerstner,et al.  Hebbian learning of pulse timing in the Barn Owl auditory system , 1999 .

[29]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[31]  John Lisman,et al.  Neuroscience: What makes the brain's tickers tock , 1998, Nature.

[32]  Risto Miikkulainen,et al.  Modeling large cortical networks with growing self-organizing maps , 2002, Neurocomputing.

[33]  Alan Ryan,et al.  From left to right , 1997 .

[34]  M. Stryker,et al.  Spatial Frequency Maps in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[35]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[36]  Klaus Schulten,et al.  Models of Orientation and Ocular Dominance Columns in the Visual Cortex: A Critical Comparison , 1995, Neural Computation.

[37]  Lawrence C. Sincich,et al.  Oriented Axon Projections in Primary Visual Cortex of the Monkey , 2001, The Journal of Neuroscience.

[38]  P. Kellman,et al.  Strength of visual interpolation depends on the ratio of physically specified to total edge length , 1992, Perception & psychophysics.

[39]  A. Rossier Letter to the Editor , 1986, Paraplegia.

[40]  Risto Miikkulainen,et al.  Tilt Aftereffects in a Self-Organizing Model of the Primary Visual Cortex , 2000, Neural Computation.

[41]  S Löwel,et al.  Ocular dominance column development: strabismus changes the spacing of adjacent columns in cat visual cortex. , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  Marius Usher,et al.  Oscillatory Model of Short Term Memory , 1991, NIPS.

[43]  Ennio Mingolla,et al.  Illusory contour formation , 1998 .

[44]  Leif H. Finkel,et al.  Identification of salient contours in cluttered images , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[45]  R. Llinás,et al.  Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[47]  C. Gray,et al.  Visually evoked oscillations of membrane potential in cells of cat visual cortex. , 1992, Science.

[48]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  W. Bair,et al.  Correlated Firing in Macaque Visual Area MT: Time Scales and Relationship to Behavior , 2001, The Journal of Neuroscience.

[50]  James M. Bower Computational Neuroscience: Trends in Research 2001 , 2000 .

[51]  K. Miller,et al.  Ocular dominance column development: analysis and simulation. , 1989, Science.

[52]  Stephen Grossberg,et al.  Visual cortical mechanisms of perceptual grouping: interacting layers, networks, columns, and maps , 2000, Neural Networks.

[53]  P. Kellman,et al.  A common mechanism for illusory and occluded object completion. , 1998, Journal of experimental psychology. Human perception and performance.

[54]  Eytan Ruppin,et al.  Memory Maintenance via Neuronal Regulation , 1998, Neural Computation.

[55]  T. Wiesel,et al.  Receptive field dynamics in adult primary visual cortex , 1992, Nature.

[56]  Risto Miikkulainen,et al.  Self-Organization and Segmentation with Laterally Connected Spiking Neurons , 1997, IJCAI.

[57]  Barak A. Pearlmutter,et al.  VC Dimension of an Integrate-and-Fire Neuron Model , 1996, Neural Computation.

[58]  Sun-Ok Gwon University of Texas at Austin의 연구 현황 , 2002 .

[59]  Andreas Thiel,et al.  Delay adaptation in the nervous system , 2000, Neurocomputing.

[60]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[61]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[62]  R Linsker,et al.  From basic network principles to neural architecture: emergence of spatial-opponent cells. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Erkki Oja,et al.  Principal components, minor components, and linear neural networks , 1992, Neural Networks.

[64]  Horace Barlow,et al.  What is the computational goal of the neocortex , 1994 .

[65]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[67]  Kenneth D. Miller,et al.  The Role of Constraints in Hebbian Learning , 1994, Neural Computation.

[68]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[69]  S. Grossberg How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. , 1999, Spatial vision.

[70]  T. Sejnowski,et al.  Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. , 1991, Journal of neurophysiology.

[71]  Reinhard Eckhorn,et al.  Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex , 1990, Neural Computation.

[72]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[73]  K. Martin,et al.  Map of the synapses onto layer 4 basket cells of the primary visual cortex of the cat , 1997, The Journal of comparative neurology.

[74]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  S. Grossberg,et al.  Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. , 1985, Psychological review.

[76]  D. Fitzpatrick,et al.  The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex , 2001, Nature.

[77]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[78]  H. Ritter,et al.  A principle for the formation of the spatial structure of cortical feature maps. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[79]  George L. Gerstein,et al.  Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex , 1994, Nature.

[80]  Vinod Menon Dynamic aspects of signaling in distributed neural systems , 1990 .

[81]  L C Katz,et al.  Development of local circuits in mammalian visual cortex. , 1992, Annual review of neuroscience.

[82]  G. Blasdel,et al.  Orientation selectivity, preference, and continuity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  L. P. O'Keefe,et al.  Functional organization of owl monkey lateral geniculate nucleus and visual cortex. , 1998, Journal of neurophysiology.

[84]  DeLiang Wang,et al.  Emergent synchrony in locally coupled neural oscillators , 1995, IEEE Trans. Neural Networks.

[85]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[86]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[87]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[88]  DeLiang Wang,et al.  Synchrony and Desynchrony in Integrate-and-Fire Oscillators , 1999, Neural Computation.

[89]  I Kovács,et al.  A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[90]  T. Sejnowski,et al.  A critique of pure vision , 1993 .

[91]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[92]  L. Finkel,et al.  Integration of distributed cortical systems by reentry: a computer simulation of interactive functionally segregated visual areas , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[93]  E. Kandel Nerve cells and behavior. , 1970, Scientific American.

[94]  G. Ermentrout,et al.  Analysis of neural excitability and oscillations , 1989 .

[95]  D. Hubel,et al.  Plasticity of ocular dominance columns in monkey striate cortex. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[96]  J. I. Nelson,et al.  Binding in the visual system , 1998 .

[97]  J Szentagothai,et al.  [Neuronal circuits of the cerebral cortex]. , 1970, Bulletin de l'Academie royale de medecine de Belgique.

[98]  Joydeep Ghosh,et al.  A complex-valued associative memory for storing patterns as oscillatory states , 1996, Biological Cybernetics.

[99]  K Nakayama,et al.  Experiencing and perceiving visual surfaces. , 1992, Science.

[100]  E. Callaway,et al.  Emergence and refinement of clustered horizontal connections in cat striate cortex , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[101]  W. Singer Synchronization of cortical activity and its putative role in information processing and learning. , 1993, Annual review of physiology.

[102]  Leon N. Cooper,et al.  BCM network develops orientation selectivity and ocular dominance in natural scene environment , 1997, Vision Research.

[103]  M. Sur,et al.  Experimentally induced visual projections into auditory thalamus and cortex. , 1988, Science.

[104]  C. Gilbert,et al.  Synaptic physiology of horizontal connections in the cat's visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[105]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[106]  Steven C. Dakin,et al.  Absence of contour linking in peripheral vision , 1997, Nature.

[107]  D. N. Spinelli,et al.  Visual Experience Modifies Distribution of Horizontally and Vertically Oriented Receptive Fields in Cats , 1970, Science.

[108]  C. Gilbert Horizontal integration and cortical dynamics , 1992, Neuron.

[109]  C. Gilbert,et al.  Distortions of visuotopic map match orientation singularities in primary visual cortex , 1997, Nature.

[110]  W. Singer,et al.  Two segmentation mechanisms with differential sensitivity for colour and luminance contrast , 1998, Vision Research.

[111]  G. Kanizsa Margini Quasi-percettivi in Campi con Stimolazione Omogenea , 1955 .

[112]  Alessandra Angelucci,et al.  Induction of visual orientation modules in auditory cortex , 2000, Nature.

[113]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[114]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[115]  G. Kanizsa,et al.  Organization in Vision: Essays on Gestalt Perception , 1979 .

[116]  A. Leventhal The neural basis of visual function , 1991 .

[117]  Zhaoping Li,et al.  A Neural Model of Contour Integration in the Primary Visual Cortex , 1998, Neural Computation.

[118]  T. Wiesel,et al.  Lateral interactions in visual cortex. , 1990, Cold Spring Harbor symposia on quantitative biology.

[119]  Seung Kee Han,et al.  TEMPORAL SEGMENTATION OF THE STOCHASTIC OSCILLATOR NEURAL NETWORK , 1998 .

[120]  J. Leo van Hemmen,et al.  Combined Hebbian development of geniculocortical and lateral connectivity in a model of primary visual cortex , 2001, Biological Cybernetics.

[121]  G. Kanizsa Subjective contours. , 1976, Scientific American.

[122]  Kathy T. Mullen,et al.  Contour integration with colour and luminance contrast , 1996, Vision Research.

[123]  W. Geisler,et al.  Perceptual organization of two-dimensional patterns. , 2000 .

[124]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[125]  Risto Miikkulainen,et al.  A Self-Organizing Neural Network for Contour Integration through Synchronized Firing , 2000, AAAI/IAAI.

[126]  D Ferster,et al.  Synaptic excitation of neurones in area 17 of the cat by intracortical axon collaterals of cortico‐geniculate cells. , 1985, The Journal of physiology.

[127]  M. Pettet,et al.  Dynamic changes in receptive-field size in cat primary visual cortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[128]  C. Blakemore,et al.  Innate and environmental factors in the development of the kitten's visual cortex. , 1975, The Journal of physiology.

[129]  Wolfgang Maass,et al.  Computing with spiking neurons , 1999 .

[130]  R Blake,et al.  Visual form created solely from temporal structure. , 1999, Science.

[131]  W. D. Ross,et al.  Visual brain and visual perception: how does the cortex do perceptual grouping? , 1997, Trends in Neurosciences.

[132]  G Westheimer,et al.  A quantitative measure for short-term cortical plasticity in human vision , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[133]  Teuvo Kohonen,et al.  Physiological interpretationm of the self-organizing map algorithm , 1993 .

[134]  S. Bressler,et al.  Episodic multiregional cortical coherence at multiple frequencies during visual task performance , 1993, Nature.

[135]  V. Ramachandran,et al.  On the perception of illusory contours , 1994, Vision Research.

[136]  Wulfram Gerstner,et al.  Associative memory in a network of ‘spiking’ neurons , 1992 .

[137]  W. Singer,et al.  Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. , 1992, Science.

[138]  Z Li,et al.  Visual segmentation by contextual influences via intra-cortical interactions in the primary visual cortex. , 1999, Network.

[139]  K Prazdny,et al.  Illusory contours are not caused by simultaneous brightness contrast , 1983, Perception & psychophysics.

[140]  Alan N. Gove,et al.  Brightness perception, illusory contours, and corticogeniculate feedback , 1995, Visual Neuroscience.

[141]  Deliang Wang,et al.  Global competition and local cooperation in a network of neural oscillators , 1995 .

[142]  Marius Usher,et al.  Visual synchrony affects binding and segmentation in perception , 1998, Nature.

[143]  R. Hetherington The Perception of the Visual World , 1952 .

[144]  UTE LEONARDS,et al.  The Influence of Temporal Phase Differences on Texture Segmentation , 1996, Vision Research.

[145]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[146]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[147]  T. Wiesel,et al.  Clustered intrinsic connections in cat visual cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[148]  E. Callaway,et al.  Effects of binocular deprivation on the development of clustered horizontal connections in cat striate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[149]  J. Changeux,et al.  SYNAPTIC PLASTICITY AS BASIS OF BRAIN ORGANIZATION , 2022 .

[150]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[151]  C D Gilbert,et al.  Circuitry, architecture and functional dynamics of visual cortex. , 1994, Ciba Foundation symposium.

[152]  D. P. Gallogly,et al.  Image Structure Models of Texture and Contour Visibility , 2000 .

[153]  Naftali Tishby,et al.  Cortical activity flips among quasi-stationary states. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[154]  P König,et al.  Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[155]  Edmund T. Rolls,et al.  THE REPRESENTATION OF INFORMATION IN THE TEMPORAL LOBE VISUAL CORTICAL AREAS OF MACAQUES , 1990 .

[156]  M. Dalva,et al.  Rearrangements of synaptic connections in visual cortex revealed by laser photostimulation. , 1994, Science.

[157]  Joel L. Davis,et al.  Large-Scale Neuronal Theories of the Brain , 1994 .

[158]  Risto Miikkulainen,et al.  Self-organization and segmentation in a laterally connected orientation map of spiking neurons , 1998, Neurocomputing.

[159]  Risto Miikkulainen,et al.  Effects of presynaptic, postsynaptic resource redistribution in Hebbian weight adaptation , 2000, Neurocomputing.

[160]  Guy A. Orban,et al.  Illusory contour orientation discrimination , 1987, Vision Research.

[161]  G. Blasdel,et al.  Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[162]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[163]  Jeffrey S. Perry,et al.  Edge co-occurrence in natural images predicts contour grouping performance , 2001, Vision Research.

[164]  L. Finkel,et al.  Extraction of perceptually salient contours by striate cortical networks , 1998, Vision Research.

[165]  Dmitri B. Chklovskii,et al.  Orientation Preference Patterns in Mammalian Visual Cortex A Wire Length Minimization Approach , 2001, Neuron.

[166]  S Lowel Ocular dominance column development: strabismus changes the spacing of adjacent columns in cat visual cortex , 1994 .

[167]  K. Obermayer,et al.  Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[168]  M Fahle,et al.  Figure–ground discrimination from temporal information , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[169]  Risto Miikkulainen,et al.  Topographic Receptive Fields and Patterned Lateral Interaction in a Self-Organizing Model of the Primary Visual Cortex , 1997, Neural Computation.

[170]  William T. Newsome,et al.  Cortical microstimulation influences perceptual judgements of motion direction , 1990, Nature.

[171]  D. Hubel,et al.  Sequence regularity and geometry of orientation columns in the monkey striate cortex , 1974, The Journal of comparative neurology.

[172]  Donald D. Hoffman,et al.  Visual intelligence: How we create what we see , 1998 .

[173]  A. Grinvald,et al.  Functional Organization for Direction of Motion and Its Relationship to Orientation Maps in Cat Area 18 , 1996, The Journal of Neuroscience.

[174]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[175]  Risto Miikkulainen,et al.  Modeling directional selectivity using self-organizing delay-adaptation maps , 2002, Neurocomputing.

[176]  D. Fitzpatrick,et al.  A systematic map of direction preference in primary visual cortex , 1996, Nature.

[177]  Jack D. Cowan,et al.  DYNAMICS OF SELF-ORGANIZED DELAY ADAPTATION , 1999 .

[178]  Risto Miikkulainen,et al.  Self-Organization of Innate Face Preferences: Could Genetics Be Expressed through Learning? , 2000, AAAI/IAAI.

[179]  James A. Anderson,et al.  Neurocomputing: Foundations of Research , 1988 .

[180]  W. Newsome,et al.  Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[181]  Idan Segev,et al.  Methods in Neuronal Modeling , 1988 .

[182]  Herbert J. Reitboeck,et al.  Object separation in dynamic neural networks , 1993, IEEE International Conference on Neural Networks.

[183]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[184]  F. Previc Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications , 1990, Behavioral and Brain Sciences.

[185]  D. Fitzpatrick,et al.  Patterns of excitation and inhibition evoked by horizontal connections in visual cortex share a common relationship to orientation columns , 1995, Neuron.

[186]  Risto Miikkulainen,et al.  A Self-Organizing Neural Network Model of the Primary Visual Cortex , 1995, ICONIP.

[187]  Risto Miikkulainen,et al.  Modeling the self-organization of directional selectivity in the primary visual cortex , 1999 .

[188]  W. J. Nowack Methods in Neuronal Modeling , 1991, Neurology.

[189]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[190]  E. Vaadia,et al.  Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. , 1993, Journal of neurophysiology.

[191]  H. Barlow The Twelfth Bartlett Memorial Lecture: The Role of Single Neurons in the Psychology of Perception , 1985, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[192]  S. Grossberg,et al.  A neural model of how horizontal and interlaminar connections of visual cortex develop into adult circuits that carry out perceptual grouping and learning. , 2010, Cerebral cortex.

[193]  J. I. Nelson Visual scene perception: neurophysiology , 1998 .

[194]  Suzanne P. McKee,et al.  Constraints on long range interactions mediating contour detection , 1998, Vision Research.

[195]  Risto Miikkulainen,et al.  Laterally Interconnected Self-Organizing Maps in Hand-Written Digit Recognition , 1995, NIPS.

[196]  C. Gilbert,et al.  On a common circle: natural scenes and Gestalt rules. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[197]  Teuvo Kohonen,et al.  Physiological interpretation of the Self-Organizing Map algorithm , 1993, Neural Networks.