Nonlinear prediction of conditional percentiles for value-at-risk

We propose, implement and evaluate an approach to predicting conditional distribution tail percentiles, which corresponds to value-at-risk (VaR) when applied to financial asset return series. Our approach differs from current methods for measuring VaR in two basic ways. Firstly, while the standard variance-covariance framework assumes that asset return distributions are normal, we make no assumptions about the shape of the entire distribution; instead we focus on estimating only the relevant percentile. Secondly, while the standard approach utilizes only the historical returns and covariances of the assets comprising the portfolio being measured, our method depends on other additional relevant exogenous variables. We use the mean weighted absolute error function (MWAE), a generalization of the well-known mean absolute error (MAE) cost function. It is a familiar statistical property that the MAE is minimized at the median, or 50th percentile of the data; the generalization allows for estimation of arbitrary p-percentiles. There are two methods to estimating values from data: a lazy method keeps all of the data to compute the desired value at any given point; in contrast, an eager method uses the data to estimate a model which is used to generate the desired output. We investigate two approaches for applying the MWAE to estimate tail percentiles, one using each method. The first, kernel percentile regression, is a lazy method, while the second, neural network percentile regression, is an eager method.

[1]  Chris I. Telmer,et al.  A?ne models of currency pricing: accounting for the forward premium anomaly , 2001 .

[2]  EstimationBrian V. BonnlanderDepartment Selecting Input Variables Using Mutual Informationand Nonparametric Density , 1996 .

[3]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[4]  Andrew W. Lo,et al.  Nonparametric estimation of state-price densities implicit in financial asset prices , 1995, Proceedings of 1995 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[5]  D. Duffie,et al.  An Overview of Value at Risk , 1997 .

[6]  K. Lewis,et al.  Puzzles in International Financial Markets , 1994 .

[7]  Halbert White,et al.  Artificial Neural Networks: Approximation and Learning Theory , 1992 .

[8]  A. S. Weigend,et al.  Selecting Input Variables Using Mutual Information and Nonparemetric Density Estimation , 1994 .

[9]  C. Engel,et al.  The Forward Discount Anomaly and the Risk Premium: A Survey of Recent Evidence , 1995 .

[10]  C. Granger,et al.  Interval forecasting. An analysis based upon ARCH-quantile estimators , 1989 .

[11]  W. A. Ericson Introduction to Mathematical Statistics, 4th Edition , 1972 .

[12]  Jose A. Lopez,et al.  Methods for Evaluating Value-at-Risk Estimates , 1998 .

[13]  A. Lo,et al.  Nonparametric Estimation of State‐Price Densities Implicit in Financial Asset Prices , 1998 .

[14]  Jacob Boudoukh,et al.  Investigation of a Class of Volatility Estimators , 1997 .

[15]  John E. Moody,et al.  Note on Learning Rate Schedules for Stochastic Optimization , 1990, NIPS.

[16]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[17]  Yves Chauvin,et al.  Backpropagation: the basic theory , 1995 .

[18]  D. Hendricks,et al.  Evaluation of Value-at-Risk Models Using Historical Data , 1996 .

[19]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[20]  Andreas S. Weigend,et al.  Computing portfolio risk using Gaussian mixtures and independent component analysis , 1999, Proceedings of the IEEE/IAFE 1999 Conference on Computational Intelligence for Financial Engineering (CIFEr) (IEEE Cat. No.99TH8408).

[21]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[22]  K. Lewis,et al.  Chapter 37 Puzzles in international financial markets , 1995 .

[23]  Burton Holli eld Aane Models of Currency Pricing: Accounting for the Forward Premium Anomaly , 1998 .

[24]  D. Reeve,et al.  Scale models. , 1991, The Health service journal.

[25]  Andreas S. Weigend,et al.  Taking time seriously: hidden Markov experts applied to financial engineering , 1997, Proceedings of the IEEE/IAFE 1997 Computational Intelligence for Financial Engineering (CIFEr).