Tissue-based map of the human proteome
暂无分享,去创建一个
G. von Heijne | C. Lindskog | J. Mulder | B. Hallström | E. Lundberg | F. Pontén | M. Uhlén | L. Fagerberg | P. Oksvold | C. Kampf | D. Djureinovic | J. Odeberg | K. Edlund | A. Asplund | E. Sjöstedt | C. Szigyarto | Jenny Ottosson Takanen | H. Berling | H. Tegel | P. Nilsson | J. Schwenk | A. Mardinoğlu | Åsa Sivertsson | Kalle von Feilitzen | Mattias Forsberg | Martin Zwahlen | Ingmarie Olsson | S. Navani | Johan Rockberg | S. Hober | Fredric Johansson | J. Nielsen | T. Alm | M. Hamsten | P. Edqvist | L. Persson | K. von Feilitzen | M. Zwahlen | Hanna Tegel | Marica Hamsten | Dijana Djureinovic | Linn Fagerberg | Per-Henrik D. Edqvist | P. Nilsson
[1] J. Nielsen,et al. The human liver‐specific proteome defined by transcriptomics and antibody‐based profiling , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
[2] J. Harrow,et al. Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding genes , 2014, Human molecular genetics.
[3] C. Lindskog,et al. The human testis-specific proteome defined by transcriptomics and antibody-based profiling. , 2014, Molecular human reproduction.
[4] B. Kuster,et al. Mass-spectrometry-based draft of the human proteome , 2014, Nature.
[5] Gary D Bader,et al. A draft map of the human proteome , 2014, Nature.
[6] J. Nielsen,et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome‐scale metabolic modeling , 2014, Molecular systems biology.
[7] M. Uhlén,et al. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease , 2014, Nature Communications.
[8] María Martín,et al. Activities at the Universal Protein Resource (UniProt) , 2013, Nucleic Acids Res..
[9] David S. Wishart,et al. DrugBank 4.0: shedding new light on drug metabolism , 2013, Nucleic Acids Res..
[10] B. Hallström,et al. The human gastrointestinal tract-specific transcriptome and proteome as defined by RNA sequencing and antibody-based profiling , 2014, Journal of Gastroenterology.
[11] J. Nielsen,et al. Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibody-based Proteomics* , 2013, Molecular & Cellular Proteomics.
[12] Gary D Bader,et al. Comprehensive identification of mutational cancer driver genes across 12 tumor types , 2013, Scientific Reports.
[13] Peter Willett,et al. What is a tutorial , 2013 .
[14] J. Harrow,et al. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene , 2013, Genome Biology.
[15] E. Lundberg,et al. RNA deep sequencing as a tool for selection of cell lines for systematic subcellular localization of all human proteins. , 2013, Journal of proteome research.
[16] A. Bairoch,et al. neXtProt: organizing protein knowledge in the context of human proteome projects. , 2013, Journal of proteome research.
[17] Edgar Wingender,et al. TFClass: an expandable hierarchical classification of human transcription factors , 2012, Nucleic Acids Res..
[18] Data production leads,et al. An integrated encyclopedia of DNA elements in the human genome , 2012 .
[19] Steven J. M. Jones,et al. Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.
[20] ENCODEConsortium,et al. An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.
[21] Caroline Kampf,et al. Production of Tissue Microarrays, Immunohistochemistry Staining and Digitalization Within the Human Protein Atlas , 2012, Journal of visualized experiments : JoVE.
[22] Janet M Thornton,et al. ELIXIR: a distributed infrastructure for European biological data. , 2012, Trends in biotechnology.
[23] Benjamin J. Raphael,et al. The Mutational Landscape of Lethal Castrate Resistant Prostate Cancer , 2012, Nature.
[24] S. Hanash,et al. The Chromosome-Centric Human Proteome Project for cataloging proteins encoded in the genome , 2012, Nature Biotechnology.
[25] A. Mardinoğlu,et al. Systems medicine and metabolic modelling , 2012, Journal of internal medicine.
[26] Tatiana A. Tatusova,et al. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy , 2011, Nucleic Acids Res..
[27] S. Brunak,et al. SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.
[28] Michele Magrane,et al. UniProt Knowledgebase: a hub of integrated protein data , 2011, Database J. Biol. Databases Curation.
[29] Carsten O. Daub,et al. Update of the FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation , 2010, Nucleic Acids Res..
[30] M. Mann,et al. Defining the transcriptome and proteome in three functionally different human cell lines , 2010, Molecular systems biology.
[31] E. Lundberg,et al. Towards a knowledge-based Human Protein Atlas , 2010, Nature Biotechnology.
[32] W. Nickel. Pathways of unconventional protein secretion. , 2010, Current opinion in biotechnology.
[33] Paul J. Choi,et al. Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells , 2010, Science.
[34] Cole Trapnell,et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.
[35] Kalle Jonasson,et al. Prediction of the human membrane proteome , 2010, Proteomics.
[36] Eric T. Wang,et al. An Abundance of Ubiquitously Expressed Genes Revealed by Tissue Transcriptome Sequence Data , 2009, PLoS Comput. Biol..
[37] Lior Pachter,et al. Sequence Analysis , 2020, Definitions.
[38] David T. Jones,et al. Transmembrane protein topology prediction using support vector machines , 2009, BMC Bioinformatics.
[39] Marcin J. Skwark,et al. SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology , 2008, Bioinform..
[40] R. Aebersold,et al. Selected reaction monitoring for quantitative proteomics: a tutorial , 2008, Molecular systems biology.
[41] G. von Heijne,et al. Prediction of membrane-protein topology from first principles , 2008, Proceedings of the National Academy of Sciences.
[42] William Stafford Noble,et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.
[43] Erik L. L. Sonnhammer,et al. Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server , 2007, Nucleic Acids Res..
[44] David T. Jones,et al. Improving the accuracy of transmembrane protein topology prediction using evolutionary information , 2007, Bioinform..
[45] Matthias Mann,et al. Innovations: Functional and quantitative proteomics using SILAC , 2006, Nature Reviews Molecular Cell Biology.
[46] Karel Drbal,et al. CD molecules 2005: human cell differentiation molecules. , 2005, Blood.
[47] S. L. Wong,et al. Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.
[48] Sergio Contrino,et al. ArrayExpress—a public repository for microarray gene expression data at the EBI , 2004, Nucleic Acids Res..
[49] S. Brunak,et al. Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.
[50] A. Krogh,et al. A combined transmembrane topology and signal peptide prediction method. , 2004, Journal of molecular biology.
[51] Eoin Fahy,et al. MitoProteome: mitochondrial protein sequence database and annotation system , 2004, Nucleic Acids Res..
[52] Yaoqi Zhou,et al. Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method , 2003 .
[53] V Vécsei,et al. Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. , 2002, Osteoarthritis and cartilage.