Mean-Field Networks

The mean field algorithm is a widely used approximate inference algorithm for graphical models whose exact inference is intractable. In each iteration of mean field, the approximate marginals for each variable are updated by getting information from the neighbors. This process can be equivalently converted into a feedforward network, with each layer representing one iteration of mean field and with tied weights on all layers. This conversion enables a few natural extensions, e.g. untying the weights in the network. In this paper, we study these mean field networks (MFNs), and use them as inference tools as well as discriminative models. Preliminary experiment results show that MFNs can learn to do inference very efficiently and perform significantly better than mean field as discriminative models.