A general noise model and its effects on evolution strategy performance

Most studies concerned with the effects of noise on the performance of optimization strategies, in general, and on evolutionary approaches, in particular, have assumed a Gaussian noise model. However, practical optimization strategies frequently face situations where the noise is not Gaussian. Noise distributions may be skew or biased, and outliers may be present. The effects of non-Gaussian noise are largely unexplored, and it is unclear whether the insights gained and the recommendations with regard to the sizing of strategy parameters that have been made under the assumption of Gaussian noise bear relevance to more general situations. In this paper, the behavior of a powerful class of recombinative evolution strategies is studied on the sphere model under the assumption of a very general noise model. A performance law is derived, its implications are studied both analytically and numerically, and comparisons with the case of Gaussian noise are drawn. It is seen that while overall, the assumption of Gaussian noise in previous studies is less severe than might have been expected, some significant differences do arise when considering noise that is of unbounded variance, skew, or biased

[1]  Magnus Rattray,et al.  Noisy Fitness Evaluation in Genetic Algorithms and the Dynamics of Learning , 1996, FOGA.

[2]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[3]  H. Szu Fast simulated annealing , 1987 .

[4]  David E. Goldberg,et al.  Genetic Algorithms, Efficiency Enhancement, And Deciding Well With Differing Fitness Bias Values , 2002, GECCO.

[5]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[6]  Hans-Georg Beyer,et al.  Performance analysis of evolutionary optimization with cumulative step length adaptation , 2004, IEEE Transactions on Automatic Control.

[7]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[8]  Thomas Bäck,et al.  Evolution Strategies on Noisy Functions: How to Improve Convergence Properties , 1994, PPSN.

[9]  H. Beyer Evolutionary algorithms in noisy environments : theoretical issues and guidelines for practice , 2000 .

[10]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[11]  David E. Goldberg,et al.  Genetic Algorithms, Selection Schemes, and the Varying Effects of Noise , 1996, Evolutionary Computation.

[12]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[13]  Haikady N. Nagaraja,et al.  18 Concomitants of order statistics , 1998, Order statistics.

[14]  Hans-Georg Beyer,et al.  The Steady State Behavior of ( μ / μ I , λ )-ES on Ellipsoidal Fitness Models Disturbed by Noise , 2003 .

[15]  Hans-Georg Beyer,et al.  Local Performance of the (μ/μ, μ)-ES in a Noisy Environment , 2000, FOGA.

[16]  Bernhard Sendhoff,et al.  The Influence of stochastic Quality Functions on Evolutionary Search , 2002, SEAL.

[17]  Hans-Georg Beyer,et al.  A Comparison of Evolution Strategies with Other Direct Search Methods in the Presence of Noise , 2003, Comput. Optim. Appl..

[18]  Bernhard Sendhoff,et al.  On the Behavior of (μ/μ1, λ)-ES Optimizing Functions Disturbed by Generalized Noise , 2002, FOGA.

[19]  P. Koumoutsakos,et al.  Multiobjective evolutionary algorithm for the optimization of noisy combustion processes , 2002 .

[20]  Hans-Georg Beyer,et al.  Performance analysis of evolution strategies with multi-recombination in high-dimensional RN-search spaces disturbed by noise , 2002, Theor. Comput. Sci..

[21]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[22]  G. Unter Rudolph Local Convergence Rates of Simple Evolutionary Algorithms with Cauchy Mutations , 1998 .

[23]  J. Fitzpatrick,et al.  Genetic Algorithms in Noisy Environments , 2005, Machine Learning.

[24]  Dirk V. Arnold,et al.  Noisy Optimization With Evolution Strategies , 2002, Genetic Algorithms and Evolutionary Computation.

[25]  Hans-Georg Beyer,et al.  Local performance of the (1 + 1)-ES in a noisy environment , 2002, IEEE Trans. Evol. Comput..

[26]  Bernhard Sendhoff,et al.  Fitness Approximation In Evolutionary Computation - a Survey , 2002, GECCO.

[27]  Ingo Rechenberg,et al.  Evolutionsstrategie '94 , 1994, Werkstatt Bionik und Evolutionstechnik.

[28]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[29]  Hans-Georg Beyer,et al.  On the Effects of Outliers on Evolutionary Optimization , 2003, IDEAL.

[30]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[31]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[32]  Jürgen Branke,et al.  Efficient Evolutionary Algorithms for Searching Robust Solutions , 2000 .

[33]  David E. Goldberg,et al.  Genetic Algorithms, Efficiency Enhancement, And Deciding Well With Differing Fitness Variances , 2002, GECCO.

[34]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[35]  Hans-Georg Beyer,et al.  The Steady State Behavior of (µ/µI, lambda)-ES on Ellipsoidal Fitness Models Disturbed by Noise , 2003, GECCO.