Robust Gaussian filtering using a pseudo measurement

Many sensors, such as range, sonar, radar, GPS and visual devices, produce measurements which are contaminated by outliers. This problem can be addressed by using fat-tailed sensor models, which account for the possibility of outliers. Unfortunately, all estimation algorithms belonging to the family of Gaussian filters (such as the widely-used extended Kalman filter and unscented Kalman filter) are inherently incompatible with such fat-tailed sensor models. The contribution of this paper is to show that any Gaussian filter can be made compatible with fat-tailed sensor models by applying one simple change: Instead of filtering with the physical measurement, we propose to filter with a pseudo measurement obtained by applying a feature function to the physical measurement. We derive such a feature function which is optimal under some conditions. Simulation results show that the proposed method can effectively handle measurement outliers and allows for robust filtering in both linear and nonlinear systems.

[1]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[2]  H. Kushner Approximations to optimal nonlinear filters , 1967, IEEE Transactions on Automatic Control.

[3]  R. Martin,et al.  Robust bayesian estimation for the linear model and robustifying the Kalman filter , 1977 .

[4]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[5]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  H. W. Sorenson,et al.  Kalman filtering : theory and application , 1985 .

[7]  G. Hewer,et al.  Robust Preprocessing for Kalman Filtering of Glint Noise , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[8]  Richard J. Meinhold,et al.  Robustification of Kalman Filter Models , 1989 .

[9]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[10]  S. Mitter,et al.  Robust Recursive Estimation in the Presence of Heavy-Tailed Observation Noise , 1994 .

[11]  Wen-Rong Wu,et al.  A nonlinear IMM algorithm for maneuvering target tracking , 1994 .

[12]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[13]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[14]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..

[15]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[16]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[17]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[18]  Rudolph van der Merwe,et al.  Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .

[19]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[20]  Yuanxin Wu,et al.  A Numerical-Integration Perspective on Gaussian Filters , 2006, IEEE Transactions on Signal Processing.

[21]  I. Bilik,et al.  Target tracking in glint noise environment using nonlinear non-Gaussian Kalman filter , 2006, 2006 IEEE Conference on Radar.

[22]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[23]  Christopher D. Karlgaard,et al.  Comparison of Several Nonlinear Filters for a Benchmark Tracking Problem , 2006 .

[24]  Stefan Schaal,et al.  A Kalman filter for robust outlier detection , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[26]  Simo Särkkä,et al.  Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations , 2009, IEEE Transactions on Automatic Control.

[27]  Eduardo Mario Nebot,et al.  An outlier-robust Kalman filter , 2011, 2011 IEEE International Conference on Robotics and Automation.

[28]  Simo Särkkä,et al.  Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[29]  David Barber,et al.  Bayesian reasoning and machine learning , 2012 .

[30]  Eduardo Mario Nebot,et al.  Approximate Inference in State-Space Models With Heavy-Tailed Noise , 2012, IEEE Transactions on Signal Processing.

[31]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .

[32]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[33]  Fredrik Gustafsson,et al.  A Student's t filter for heavy tailed process and measurement noise , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[34]  R. Cooke,et al.  Fat-Tailed Distributions: Data, Diagnostics and Dependence , 2014 .

[35]  Wenjian Wang,et al.  Observation noise modeling based particle filter: An efficient algorithm for target tracking in glint noise environment , 2015, Neurocomputing.

[36]  Stefan Schaal,et al.  A new perspective and extension of the Gaussian Filter , 2015, Int. J. Robotics Res..

[37]  Stefan Schaal,et al.  Depth-based object tracking using a Robust Gaussian Filter , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).